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Abstract. The authors present a new technique for the linearization of even-order nonlinear
differential equations with a sublinear neutral term. They establish some new oscillation
criteria via comparison with higher-order linear delay differential inequalities as well as with
first-order linear delay differential equations whose oscillatory characters are known. Examples
are provided to illustrate the theorems.
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1. INTRODUCTION

This paper deals with the oscillatory behavior of solutions to a class of even-order
neutral differential equations with a sublinear neutral term of the form

y(n)(t) + q(t)xβ(τ(t)) = 0, (1.1)

where y(t) = x(t) + p(t)xα(σ(t)), t ≥ t0 > 0, n ≥ 2 is an even natural number, and
the following conditions are always assumed to hold:

(h1) α, β are the ratios of positive odd integers with 0 < α < 1;
(h2) p, q : [t0,∞)→ (0,∞) are real valued continuous functions with limt→∞ p(t) = 0;
(h3) τ , σ : [t0,∞) → R are real valued continuous functions such that τ(t) ≤ t,

σ(t) ≤ t, and limt→∞ τ(t) = limt→∞ σ(t) =∞.

By a solution of equation (1.1) we mean a function x : [tx,∞)→ R, tx ≥ t0, such that
y ∈ Cn ([tx,∞),R) and that satisfies equation (1.1) on [tx,∞). We consider only those
solutions x(t) of (1.1) that satisfy sup {|x(t)| : t ≥ T} > 0 for all T ≥ tx; moreover,
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we tacitly assume that (1.1) possesses such solutions. Such a solution x(t) of (1.1) is
said to be oscillatory if it has arbitrarily large zeros on [tx,∞), i.e., for any t1 ∈ [tx,∞)
there exists t2 ≥ t1 such that x(t2) = 0; otherwise it is called nonoscillatory, i.e., if it
is eventually positive or eventually negative. Equation (1.1) is said to be oscillatory if
all its solutions are oscillatory.

In recent years, there has been much research activity concerning the oscillation
and nonoscillation of solutions of various differential equations, and we refer the reader
to the monographs [7, 14], the papers [1–6,8–13,17,20], and the references contained
therein. However, there are few results dealing with the oscillation of differential
equations with a sublinear neutral term; see, for example, [3], where second-order
differential equations of the type (1.1) are studied.

In this article, we shall present a new technique for the linearization of even-order
nonlinear differential equations with a sublinear neutral term of the type (1.1). We
establish some new criteria for the oscillation of all solutions via a comparison with
higher-order linear delay differential inequalities as well as with first-order linear delay
differential equations whose oscillatory characters are known.

2. MAIN RESULTS

We begin with the following lemmas that are essential in the proofs of our theorems.
The first one is a well known result that is due to Kiguradze [16].

Lemma 2.1. Let f ∈ Cn ([t0,∞), (0,∞)). If the derivative f (n)(t) is eventually of
one sign for all large t, then there exist a tx ≥ t0 and an integer l, 0 ≤ l ≤ n, with
n+ l even for f (n)(t) ≥ 0, or n+ l odd for f (n)(t) ≤ 0 such that

l > 0 implies f (k)(t) > 0 for t ≥ tx, k = 0, 1, . . . , l − 1,

and

l ≤ n− 1 implies (−1)l+kf (k)(t) > 0 for t ≥ tx, k = l, l + 1, . . . , n− 1.

Lemma 2.2 ([7, Lemma 2.2.3]). Let f ∈ Cn ([t0,∞), (0,∞)), f (n)(t)f (n−1)(t) ≤ 0
for t ≥ tx, and assume that limt→∞ f(t) 6= 0. Then for any constant θ ∈ (0, 1), there
exists a tθ ∈ [tx,∞) such that, for all t ∈ [tθ,∞),

f(t) ≥ θ

(n− 1)! t
n−1

∣∣∣f (n−1)(t)
∣∣∣ . (2.1)

Lemma 2.3 ([15]). If X and Y are nonnegative and 0 < λ < 1, then

Xλ − λXY λ−1 − (1− λ)Y λ ≤ 0, (2.2)

where equality holds if and only if X = Y .
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Now, we present our first oscillation result for Eq. (1.1) in the case where β > 1.

Theorem 2.4. Let β > 1. If the even-order linear delay differential inequality

y(n)(t) +Mq(t)y(τ(t)) ≤ 0 (2.3)

has no positive solution for every constant M > 0, then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(σ(t)) > 0,
and x(τ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. (The proof if x(t) is eventually negative is
similar, so we omit the details of that case here as well as in the remaining proofs in
this paper). From (1.1) and condition (h2), we have

y(n)(t) = −q(t)xβ(τ(t)) < 0 for t ≥ t1. (2.4)

Then, in view of Lemma 2.1, there exists a t2 ≥ t1 such that

y′(t) > 0 and y(n−1)(t) > 0 for t ≥ t2. (2.5)

It follows from the definition of y(t) that

x(t) = y(t)− [p(t)xα(σ(t))− p(t)x(σ(t))]− p(t)x(σ(t)). (2.6)

Applying Lemma 2.3 with

λ = α, X = p1/α(t)x(σ(t)), and Y =
(

1
α
p(α−1)/α(t)

)1/(α−1)
,

we obtain
p(t)xα(σ(t))− p(t)x(σ(t)) ≤ (1− α)α α

1−α p(t). (2.7)
Substituting (2.7) into (2.6) gives

x(t) ≥ y(t)− p(t)x(σ(t))− (1− α)α α
1−α p(t). (2.8)

Since y(t) > 0 and y′(t) > 0 on [t2,∞), there exist a t3 ≥ t2 and a constant c > 0 such
that

y(t) ≥ c for t ≥ t3. (2.9)
In view of (2.9) and the fact that x(t) ≤ y(t), (2.8) yields

x(t) ≥ y(t)− p(t)y(σ(t))− (1− α)α α
1−α p(t)

≥ y(t)− p(t)y(t)− (1− α)α α
1−α p(t)

=
(

1− p(t)− 1
y(t) (1− α)α α

1−α p(t)
)
y(t)

≥
(

1− p(t)− 1
c

(1− α)α α
1−α p(t)

)
y(t)

=
[
1− p(t)

(
1 + 1

c
(1− α)α α

1−α

)]
y(t)

(2.10)
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for t ≥ t3. From (2.10) and the fact that limt→∞ p(t) = 0, for any ξ ∈ (0, 1) there
exists tξ ≥ t3 such that

x(t) ≥ ξy(t) for t ≥ tξ. (2.11)
Fix ξ ∈ (0, 1) and choose tξ by (2.11). Since limt→∞ τ(t) =∞, we can choose t5 ≥ tξ
such that τ(t) ≥ tξ for all t ≥ t5. Thus, from (2.11) we have

x(τ(t)) ≥ ξy(τ(t)) for t ≥ t5. (2.12)

Using (2.12) in (1.1) gives

y(n)(t) + ξβq(t)yβ(τ(t)) ≤ 0, (2.13)

which can be written as

y(n)(t) + ξβq(t)yβ−1(τ(t))y(τ(t)) ≤ 0 for t ≥ t5. (2.14)

From (2.9), the fact that y(t) is increasing and τ(t) ≥ tξ, (2.14) yields

y(n)(t) + ξβcβ−1q(t)y(τ(t)) ≤ 0,

or
y(n)(t) +Mq(t)y(τ(t)) ≤ 0 for t ≥ t5, (2.15)

where M = ξβcβ−1 > 0. That is, (2.3) has a positive solution, which is a contradiction.
This completes the proof of the theorem.

From Theorem 2.4, we immediately have the following oscillation criterion for
Eq. (1.1) in the case where β = 1.
Theorem 2.5. Let β = 1. If the even-order linear delay differential inequality

y(n)(t) + ξq(t)y(τ(t)) ≤ 0 (2.16)

has no positive solution for any ξ ∈ (0, 1), then equation (1.1) is oscillatory.
The above theorem follows from (2.13) with β = 1 and Theorem 2.4; we omit the

details of the proof.
Next, we establish an oscillation result for Eq. (1.1) in the case where 0 < β < 1.

Theorem 2.6. Let 0 < β < 1. If the even-order linear delay differential inequality

y(n)(t) +K
(
τn−1(t)

)β−1
q(t)y(τ(t)) ≤ 0 (2.17)

has no positive solution for every constant K > 0, then equation (1.1) is oscillatory.
Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(σ(t)) > 0,
and x(τ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Proceeding as in the proof of Theorem 2.4,
we again arrive at (2.13) which can be written as

y(n)(t) + ξβq(t)
y1−β(τ(t))y(τ(t)) ≤ 0 for t ≥ t5. (2.18)
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Since y(n−1)(t) is positive and decreasing on [t5,∞) ⊆ [t2,∞), there exist a constant
C > 0 and a t6 ≥ t5 such that

y(n−1)(t) ≤ C for t ≥ t6. (2.19)

Integrating (2.19) from t6 to t consecutively n− 1 times, we deduce that

y(t) ≤ Ntn−1, t ≥ t6, (2.20)

for some constant N > 0, and so,

y(τ(t)) ≤ Nτn−1(t), t ≥ t7 ≥ t6, (2.21)

where we assume τ(t) ≥ t6 for t ≥ t7. Using (2.21) in (2.18) gives

y(n)(t) + ξβNβ−1(τn−1(t)
)β−1

q(t)y(τ(t)) ≤ 0,

or
y(n)(t) +K

(
τn−1(t)

)β−1
q(t)y(τ(t)) ≤ 0 for t ≥ t7, (2.22)

where K = ξβNβ−1 > 0. The remainder of the proof is similar to that of Theorem 2.4
and hence is omitted.

The following results are concerned with the oscillatory behavior of Eq. (1.1) via
comparison with first order equations whose oscillatory characters are known.

Theorem 2.7. Let β > 1. If there exists θ0 ∈ (0, 1) such that the first-order linear
delay differential equation

z′(t) + θ0
(n− 1)!Mτn−1(t)q(t)z(τ(t)) = 0 (2.23)

is oscillatory for every constant M > 0, then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(σ(t)) > 0,
and x(τ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Proceeding as in the proof of Theorem 2.4,
we again arrive at (2.15) for t ≥ t5. Since y(t) > 0 and y′(t) > 0 on [t5,∞) ⊆ [t2,∞), we
have

lim
t→∞

y(t) 6= 0,

and so, by Lemma 2.2, there exist θ, with 0 < θ < 1, and t6 ≥ t5 such that

y(t) ≥ θ

(n− 1)! t
n−1y(n−1)(t) for t ≥ t6. (2.24)

Using (2.24) in (2.15) gives

y(n)(t) + θ

(n− 1)!Mτn−1(t)q(t)y(n−1)(τ(t)) ≤ 0, t ≥ t7 ≥ t6. (2.25)
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With z(t) = y(n−1)(t), we see that z(t) is a positive solution of the first-order linear
delay differential inequality

z′(t) + θ

(n− 1)!Mτn−1(t)q(t)z(τ(t)) ≤ 0 for t ≥ t7. (2.26)

Integrating inequality (2.26) from t ≥ t7 to u and letting u→∞, we obtain

z(t) ≥
∞∫

t

θ

(n− 1)!Mτn−1(s)q(s)z(τ(s))ds for t ≥ t7.

The function z(t) is obviously decreasing on [t7,∞), and hence, by Theorem 1
in [18], we conclude that there exists a positive solution z(t) of equation (2.23)
with limt→∞ z(t) = 0, which contradicts the fact that equation (2.23) is oscillatory.
This completes the proof of the theorem.

Similarly, we find the following oscillation results.

Theorem 2.8. Let β = 1. If there exists θ0 ∈ (0, 1) such that the first-order linear
delay differential equation

z′(t) + θ0
(n− 1)!ξτ

n−1(t)q(t)z(τ(t)) = 0 (2.27)

is oscillatory for every ξ ∈ (0, 1), then equation (1.1) is oscillatory.

The above theorem follows from (2.13) with β = 1, (2.24), and Theorem 2.7;
we omit its proof.

By applying a result of Baculíková and Džurina ([9, Lemma 4]), we have the
following result.

Corollary 2.9. Let β ≥ 1. If

lim
t→∞

t∫

τ(t)

τn−1(s)q(s)ds =∞, (2.28)

then equation (1.1) is oscillatory.

Proof. Applying Lemma 4 in [9], we see that equations (2.23) and (2.27) are oscillatory,
and so from Theorems 2.7 and 2.8, we conclude that equation (1.1) is oscillatory.

Theorem 2.10. Let 0 < β < 1. If there exists θ0 ∈ (0, 1) such that the first-order
linear delay differential equation

z′(t) + θ0
(n− 1)!K

(
τn−1(t)

)β
q(t)z(τ(t)) = 0 (2.29)

is oscillatory for every constant K > 0, then equation (1.1) is oscillatory.
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The above theorem follows from (2.22), (2.24), and Theorem 2.7; we omit the details
of its proof.

Similar to what we did above, we have the following corollary.

Corollary 2.11. Let 0 < β < 1. If

lim
t→∞

t∫

τ(t)

(τn−1(s))βq(s)ds =∞, (2.30)

then equation (1.1) is oscillatory.

We conclude this paper with the following example to illustrate the above results.

Example 2.12. Consider the nonlinear delay differential equation with a sublinear
neutral term

(
x(t) + 1

(1 + t)µx
α(t/3)

)(n)
+ l

tγ
x3(t/2) = 0, t ≥ t0 > 0, (2.31)

where µ > 0, 0 < α < 1, l > 0, and 0 ≤ γ < n. Here p(t) = 1/(t + 1)µ, σ(t) = t/3,
τ(t) = t/2, β = 3, and q(t) = l/tγ . Then,

t∫

τ(t)

τn−1(s)q(s)ds =
t∫

t/2

(s
2

)n−1 l

sγ
ds

= l

2n−1

t∫

t/2

sn−γ−1ds = l

2n−1
(2n−γ − 1)tn−γ

2n−γ(n− γ) .

(2.32)

Taking lim as t → ∞ in (2.32), we see that (2.28) holds, and so equation (2.31) is
oscillatory by Corollary 2.9.

We conclude this paper with the following observations. There are many results in
the literature on the oscillation of first and higher order linear differential equations, and
so it would be possible to formulate many criteria for the oscillation of equation (1.1)
based on the results in this paper. Also, it would be of interest to study equation
(1.1) with α > 1, i.e., equation (1.1) with a superlinear neutral term.
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