PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

LQG/LTR control of input-delayed discrete-time systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simple robust cheap LQG control is considered for discrete-time systems with constant input delay. It is well known that the full loop transfer recovery (LTR) effect measured by error function ∆(z) can only be obtained for minimum-phase (MPH) systems without time-de-lay. Explicit analytical expressions for ∆(z) versus delay d are derived for both MPH and NMPH (nonminimum-phase) systems. Obviously, introducing delay deteriorates the LTR effect. In this context the ARMAX system as a simple example of noise-correlated system is examined. The robustness of LQG/LTR control is analyzed and compared with state prediction control whose robust stability is formulated via LMI. Also, the robustness with respect to uncertain time-delay is considered including the control systems which are unstable in open-loop. An analysis of LQG/LTR problem for noise-correlated systems, particularly for ARMAX system, is included and the case of proper systems is analyzed. Computer simulations of second-order systems with constant time-delay are given to illustrate the performance and recovery error for considered systems and controllers.
Słowa kluczowe
Rocznik
Strony
1049--1058
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • Poznan University of Technology, Institute of Control, Robotics and Information Engineering, Piotrowo 3a, 60-965 Poznan, Poland
Bibliografia
  • [1] Blachuta M.J., “Discrete-time modeling of sampled-data control systems with direct feed through”, IEEE Trans. Automat .Contr. 44(1), 134–139 (1999).
  • [2] Blachuta M.J., “On fast state-space algorithms for predictive control”, Int.J.Appl.Math. and Comp.Scie. 9(1), 149–160 (1999).
  • [3] Blachuta M.J. and Polanski A., “On time-invariant realizations of discrete random processes”, IEEE Trans. Automat. Contr. AC-32, 1125–1127 (1987).
  • [4] Cai X. and Liao L., “Predictor-based stabilization for discrete nonlinear systems with state-dependent input delays” ,International Journal of System Science 48(4), 769–777 (2017).
  • [5] Cacace F., Conte F., and Germani A., “Memory less approach to the LQ and LQG problems with variable in put delay”, IEEE Trans. Automat. Contr. 2016, Vol.61(1), pp. 216-221.
  • [6] Cacace F. and Germani A., “Output feed back control of linear systems within put, state and output delays by chains o fpredictors”, Automatica 85, 455–461 (2017).
  • [7] Cacace F., Conte F., Germani A., and Palombo G., “Joint State Estimation and Delay Identification for Nonlinear Systems with Delayed Measurements”, IEEE Transactionson Automatic Control, 62(9), 4848–4854 (2017).
  • [8] Cacace F., Conte F., and Germani A., “Output transformations and separation results for feedback linearisable delay systems”, International Journal of Control 91(4), 797–812 (2018).
  • [9] Chen Y., Zulfiqar A., Mac D., Shi Y., Chen J., and Allgöwer F.,“Simultaneous stabilization of discrete-time delay systems and bounds on delay margin”, Automatica 101, 296–308 (2019).
  • [10] Gaudette D.L. and Miller D.E., “When is the achievable discrete-time delay margin on zero?”, IEEE Trans. Automat. Contr. 56(4), 886–899 (2011).
  • [11] Gonzales A., Sala A.,and Albertos P., “Predictor based stabilization of discrete time-varyingin put-delay systems”, Automatica 48(4), 454–457 (2012).
  • [12] Grimble M. and Hearns G., “LQG controllers for unstable system swith transport delays; thickness control in rolling mills”, Proc. Of the 37th Conference on Decision and Control, Tampa, pp. 3150–3155 (1998).
  • [13] Horla D. and Krolikowski A., “Adaptive LQG/LTR control; discountinuity issue”, Proc. Of the 11th IEEE Int. Conference ICINCO, Vienna, 2014, pp.802-807.
  • [14] Horla D. and Krolikowski A., “LQG/LTR versus Smith predictor control for discrete-time systems with delay”, Proc. Of the 12th IEEE Int. Conference ICINCO, Colmar, pp. 388–397 (2015).
  • [15] Hu S. and Zhu Q., “Stochastic optimal control and analysis of stability of networked control systems with long delay”, Automatica 39(5), 1877–1884 (2003).
  • [16] Javadi A., Reza M., and Jalali A.A., “Robust H∞ control of stochastic linear systems with input delay by predictor feedback”, Transactions of the Institute of Measurement and Control 40(4), 2396–2407 (2017).
  • [17] Huang C.-P. and Juang Y.-T.,“Robustness analysis of discrete time-delay systems”, Int. J. of Systems Science. 37(1),1–7 (2006).
  • [18] Pal V.C. and Negi R.,“Robust output feedback controlof 2D discrete systems with actuator saturation and time-varying delay”, Transactions of the Institute of Measurement and Control 39(11), 1673–1695 (2017).
  • [19] Ishihara T., Chiba N., and Inooka H., “Loop Transfer recovery for discrete-time plants with direct feed through terms”, Trans. Of the Society of Instrument and Control Engineers3 3(4), 247–252 (1997).
  • [20] Kinnaert M. and Peng Y., “Discrete-time LQG/LTR technique for systems with time delays”, System sand Control Letters, 1990, Vol.15, pp.303-311 (1990).
  • [21] Kodjina A., Uchida K., Shimemura F., and Ishijima S., “Robust stabilization of a system with delay sin control”, IEEE Trans. Automat. Contr., 1994, Vol. 39(8), pp.1694-1698 (1994).
  • [22] Krolikowski A. and Horla D., “Robustness of adaptive discrete-time LQG control for first-order systems”, Bull. Pol. Ac.: Tech. 58(1), 89–97 (2010).
  • [23] Kucera V., “State Space Approach to Discrete Linear Control”, Kybernetika 8(3), 233–252 (1972).
  • [24] Kwong R.H., “On the linear quadratic Gaussian problem with correlated noise and its relation to minimum variance control”, SIAMJ. Control and Optimization 29(1), 139–152 (1991).
  • [25] Lin Z., “On asymptotic stabilizability of discrete-time-linear systems with delayed input”, Communications in Information and Systems 7(3), 227–264(2007).
  • [26] Liu T., Cai Y.Z., Gu D.Y., and Zhang W.D., “New modified Smith predictor scheme for integrating and unstable processes with time-delay”, IEE Proc. Control Theory Appl. 152 (5), 238–246 (2005).
  • [27] Liu K.-Z., Sun X.-M., and Krstic M., “Distributed predictor-based stabilization of continuous interconnected systems with input delays”, Automatica 91, 69–78 (2018).
  • [28] Maciejowski J.M., “Asymptotic recovery for discrete-time sys-tems”, IEEE Trans. Automat. Contr. 30(6), 602–605 (1985).
  • [29] Soroush M. and Kravaris C., “Discrete-time nonlinear controller synthesis by input/output linearization”, AIChE Journal 38 (12), 1923–1945 (1992).
  • [30] Tadjine M., M’Saad M., and Dugard L., “Discrete-time compen-sators with loop transfer recovery”, IEEE Trans. Automat. Contr. 39(6), 1259–1262 (1994).
  • [31] Xia Z. and Shouming Z., “Mean square stability of discrete time stochastic control systems with delays and nonlinear perturbations”, Filomat. 27(6), 1011–1025 (2013).
  • [32] Zhang B., Xu S., and Zou Y., “Improved stability criterion and its application in delayed controller design for discrete-times systems”, Automatica 44, 2933–2967 (2008).
  • [33] Zhang Z. and Freudenberg J.S., “Discrete-time loop transfer recovery for systems with nonminimum phase zero sand time delays”, Automatica 29 (2), 351–365 (1993).
  • [34] Zhang Z. and Freudenberg J.S., “Loop transfer recovery for nonminimum phase plants”, IEEE Trans. Automat. Contr. 35(5), 547–553 (1990).
  • [35] Zhou B. and Li Z., “Parametric Lyapunov Equation approach to stabilization of discrete-time systems with input delay and saturation”, IEEE Trans. On Circuits and Systems–Regular Papers 58(11), 2741–2753 (2011).
  • [36] Zhou B., Li Z.-Y., and Lin Z., “Stabilization of discrete-time systems with multiple actuator delays and saturations”, IEEE Trans. On Circuits and Systems–Regular Papers 60(2), 189–200 (2013).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d56dbce-f7cc-4b01-8b56-2af1c8839e5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.