PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rozmowa z Andrzejem Nowakiem – Laureatem Nagrody im. Rufusa Isaacsa

Identyfikatory
Warianty tytułu
EN
Interview with Andrzej Nowak - Laureate of the Rufus Isaacs Award
Języki publikacji
PL
Abstrakty
PL
Nagroda Rufusa Isaacsa jest przyznawana co dwa lata za wybitne wyniki w dziedzinie gier dynamicznych na Sympozjach Międzynarodowego Towarzystwa Gier Dynamicznych począwszy od 2004 roku. W 2018 r. nagroda ta została przyznana prof. dr hab. Andrzejowi S. Nowakowi z Uniwersytetu Zielonogórskiego oraz prof. Georges Zaccourowi z HEC w Montrealu. Artykuł prezentuje wywiad z prof. dr hab. Andrzejem Nowakiem, w którym Laureat wspomina swoją drogę naukową, opowiada o uzyskanych wynikach w tej dziedzinie i ludziach, których spotkał podczas swojej kariery naukowej. Lista wszystkich laureatów znajduje się w dodatku zamieszczonym na końcu wywiadu.
EN
The Isaacs Award, named after Rufus Isaacs, is given every two years for the outstanding achievements in dynamic games by the International Society of Dynamic Games since 2004. In 2018, Professors Andrzej Nowak (University of Zielona Góra) and Georges Zaccour (HEC, Montreal) were awarded. The article presents an interview with Professor Andrzej Nowak, in which the Laureate tells about his research career, the significant results obtained in this field and mentions scholars he met as a scientist. The list of all winners can be found in the appendix at the end of the interview.
Rocznik
Strony
61--80
Opis fizyczny
Bibliogr. 54 poz., fot.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Pure and Applied Mathematics, Wybrzeże Wyspiańskiego 27, Wrocław 50-370
Bibliografia
  • [1] R. J. Aumann and S. Hart, editors. Handbook of game theory with economic applications. Vol. I, volume 11 of Handbooks in Economics. North-Holland Publishing Co., Amsterdam, 1992. ISBN 0-444-88098-4. MR 1202045. Cited on pp. 65 and 72.
  • [2] R. J. Aumann and S. Hart, editors. Handbook of game theory with economic applications. Vol. II, volume 11 of Handbooks in Economics. North-Holland Publishing Co., Amsterdam, 1994. ISBN 0-444-89427-6. MR1313215. Cited on pp. 65 and 72.
  • [3] R. J. Aumann and S. Hart, editors. Handbook of game theory with economic applications. Vol. 3, volume 11 of Handbooks in Economics. Elsevier/North-Holland, Amsterdam, 2002. ISBN 0-444-89428-4. Cited on p. 72.
  • [4] Ł. Balbus and A. Nowak. Existence of perfect equilibria in a class of multigenerational stochastic games of capital accumulation. Automatica, 44 (6):1471-1479, 2008. ISSN 0005-1098. Cited on p. 70.
  • [5] Ł. Balbus, A. Jaśkiewicz, and A. Nowak. Stochastic bequest games. Games Econom. Behav., 90:247-256, 2015. ISSN 0899-8256. doi: 10.1016/j.geb.2015.02.017. MR 3337377. Cited on p. 70.
  • [6] Ł. Balbus, A. Jaśkiewicz, and A. S. Nowak. Existence of stationary Markov perfect equilibria in stochastic altruistic growth economies. J. Optim. Theory Appl., 165 (1):295-315, 2015. ISSN 0022-3239. doi: 10.1007/s10957-014-0555-1. Cited on p. 70.
  • [7] Ł. Balbus, A. Jaśkiewicz, and A. Nowak. Non-paternalistic intergenerational altruism revisited. J. Math. Econom., 63:27-33, 2016. ISSN 0304-4068. doi: 10.1016/j.jmateco.2015.12.002. MR 3476586. Cited on p. 70.
  • [8] T. Basar and G. Zaccour, editors. Handbook of Dynamic Game Theory. Springer International Publishing AG, part of Springer Nature, Cham, 2016. ISBN 878-3-319-44373-7. doi: 10.1007/978-3-319-44374-4. Cited on pp. 63 and 72.
  • [9] D. Blackwell. An analog of the minimax theorem for vector pay-offs. Pacific J. Math., 6:1-8, 1956. ISSN 0030-8730. URL http://projecteuclid.org/euclid.pjm/1103044235. Cited on p. 63.
  • [10] D. Blackwell. Discrete dynamic programming. Ann. Math. Statist., 33: 719-726, 1962. ISSN 0003-4851. doi: 10.1214/aoms/1177704593. Cited on pp. 63 and 64.
  • [11] D. Blackwell. Discounted dynamic programming. Ann. Math. Statist., 36: 226-235, 1965. ISSN 0003-4851. doi: 10.1214/aoms/1177700285. Cited on pp. 63 and 64.
  • [12] D. Blackwell. Infinite Gδ-games with imperfect information. Zastos. Mat., 10:99-101, 1969. ISSN 0044-1899. Cited on p. 65.
  • [13] D. Blackwell. Borel sets via games. Ann. Probab., 9 (2):321-322, 1981. ISSN 0091-1798. URL http://links.jstor.org/sici?sici=0091-1798(198104)9:2<321:BSVG>2.0.CO;2-8&origin=MSN. Cited on p. 63.
  • [14] D. Blackwell. Operator solution of infinite Gδ games of imperfect information. In Probability, statistics, and mathematics, pages 83-87. Academic Press, Boston, MA, 1989. Cited on p. 65.
  • [15] D. Blackwell and T. S. Ferguson. The big match. Ann. Math. Statist, 39: 159-163, 1968. ISSN 0003-4851. doi: 10.1214/aoms/1177698513. Cited on p. 63.
  • [16] D. Blackwell and C. Ryll-Nardzewski. Non-existence of everywhere proper conditional distributions. Ann. Math. Statist., 34:223-225, 1963. ISSN 0003-4851. doi: 10.1214/aoms/1177704259. Cited on p. 63.
  • [17] L. E. Dubins and L. J. Savage. Inequalities for stochastic processes. How to gamble if you must. 2nd ed. Dover Publications, Mineola, NY, 1976. Cited on p. 63.
  • [18] D. Duffie, J. Geanakoplos, A. Mas-Colell, and A. McLennan. Stationary Markov equilibria. Econometrica, 62 (4):745-781, 1994. ISSN 0012-9682. doi: 10.2307/2951731. URL https://doi.org/10.2307/2951731. Cited on p. 68.
  • [19] E. B. Dynkin. Game variant of a problem on optimal stopping. Soviet Math. Dokl., 10:270-274, 1969. URL http://mi.mathnet.ru/dan34469. E. Б. Дынкин. „Игровой вариант задачи об оптимальной остановке”, Докл. АН СССР, 185:1 (1969), 16-19. Cited on p. 64.
  • [20] D. Gale and F. M. Stewart. Infinite games with perfect information. In Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, pages 245-266. Princeton University Press, Princeton, N. J., 1953. Cited on pp. 63 and 71.
  • [21] I. L. Glicksberg. A further generalization of the Kakutani fixed theorem, with application to Nash equilibrium points. Proc. Amer. Math. Soc., 3:170-174, 1952. ISSN 0002-9939. doi: 10.2307/2032478. URL https://doi.org/10.2307/2032478. Cited on p. 68.
  • [22] C. Harris, P. Reny, and A. Robson. The existence of subgame-perfect equilibrium in continuous games with almost perfect information: A case for public randomization. Econometrica, 63 (3):507-544, 1995. ISSN 0012-9682; 1468-0262/e. Cited on p. 68.
  • [23] R. Isaacs. Differential games. A mathematical theory with applications to warfare and pursuit, control and optimization. (The SIAM Series in Applied Mathematics) New York-London-Sydney: John Wiley and Sons, Inc. XXII, 384 p. (1965)., 1965. Zbl 0125.38001. Cited on pp. 62, 70, and 78.
  • [24] A. Jaśkiewicz and A. S. Nowak. Zero-sum ergodic stochastic games with Feller transition probabilities. SIAM J. Control Optim., 45 (3):773-789, 2006. ISSN 0363-0129. doi: 10.1137/S0363012904443257. Cited on p. 67.
  • [25] A. Jaśkiewicz and A. S. Nowak. Non-zero-sum stochastic games. In T. Basar and G. Zaccour, editors, Handbook of Dynamic Game Theory, pages 1-64. Springer International Publishing, Cham, 2017. ISBN 978-3-319-27335-8. doi: 10.1007/978-3-319-27335-8_33-2. Cited on pp. 62, 70, and 72.
  • [26] A. Jaśkiewicz and A. S. Nowak. Stochastic games with unbounded payoffs: Applications to robust control in economics. Dynamic Games and Applications, 1 (2):253-279, Jun 2011. ISSN 2153-0793. doi: 10.1007/s13235-011-0013-8. Cited on p. 67.
  • [27] A. Jaśkiewicz and A. S. Nowak. Stationary almost Markov perfect equilibria in discounted stochastic games. Math. Oper. Res., 41 (2):430-441, 2016. ISSN 0364-765X. doi: 10.1287/moor.2015.0734. Cited on p. 69.
  • [28] A. Jaśkiewicz and A. S. Nowak. Zero-sum stochastic games. In T. Basar and G. Zaccour, editors, Handbook of Dynamic Game Theory, pages 1-65. Springer International Publishing, Cham, 2016. ISBN 978-3-319-27335-8. doi: 10.1007/978-3-319-27335-8_8-1. Cited on pp. 62, 70, and 72.
  • [29] K. Kuratowski and C. Ryll-Nardzewski. A general theorem on selectors. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 13:397-403, 1965. ISSN 0001-4117. Cited on p. 64.
  • [30] Y. J. Levy and A. McLennan. Corrigendum to „Discounted stochastic games with no stationary Nash equilibrium: two examples” [ MR3117038]. Econometrica, 83 (3):1237-1252, 2015. ISSN 0012-9682. doi: 10.3982/ECTA12183. URL https://doi.org/10.3982/ECTA12183. Cited on p. 69.
  • [31] A. Maitra and W. Sudderth. Borel stochastic games with lim sup payoff. Ann. Probab., 21 (2):861-885, 1993. ISSN 0091-1798. URL https://www.jstor.org/stable/2244679. Cited on p. 65.
  • [32] A. Maitra and W. Sudderth. Finitely additive and measurable stochastic games. Internat. J. Game Theory, 22 (3):201-223, 1993. ISSN 0020-7276. doi: 10.1007/BF01240053. Cited on p. 65.
  • [33] A. Maitra and W. Sudderth. Finitely additive stochastic games with Borel measurable payoffs. Internat. J. Game Theory, 27 (2):257-267, 1998. ISSN 0020-7276. doi: 10.1007/s001820050071. Cited on p. 65.
  • [34] A. P. Maitra and W. D. Sudderth. Discrete gambling and stochastic games, volume 32 of Applications of Mathematics (New York). Springer-Verlag, New York, 1996. ISBN 0-387-94628-4. doi: 10.1007/978-1-4612-4002-0. Cited on p. 65.
  • [35] D. A. Martin. Borel determinacy. Ann. of Math. (2), 102 (2):363-371, 1975. ISSN 0003-486X. doi: 10.2307/1971035. MR 0403976. Cited on p. 71.
  • [36] M. Maschler, E. Solan, and S. Zamir. Game theory. Cambridge University Press, Cambridge, 2013. ISBN 978-1-107-00548-8. doi: 10.1017/CBO9780511794216. Translated from Hebrew by Ziv Hellman and edited by Mike Borns. MR 3154588. Cited on p. 66.
  • [37] J.-F. Mertens. A measurable „measurable choice” theorem. In Stochastic games and applications (Stony Brook, NY, 1999), volume 570 of NATO Sci. Ser. C Math. Phys. Sci., pages 107-130. Kluwer Acad. Publ., Dordrecht, 2003. Cited on p. 69.
  • [38] J.-F. Mertens and A. Neyman. Stochastic games have a value. Proc. Nat. Acad. Sci. U.S.A., 79 (6):2145-2146, 1982. ISSN 0027-8424. doi: 10.1073/pnas.79.6.2145. URL https://doi.org/10.1073/pnas.79.6.2145. Cited on p. 63.
  • [39] J.-F. Mertens and T. Parthasarathy. Equilibria for discounted stochastic games. In Stochastic games and applications (Stony Brook, NY, 1999), volume 570 of NATO Sci. Ser. C Math. Phys. Sci., pages 131-172. Kluwer Acad. Publ., Dordrecht, 2003. Cited on p. 68.
  • [40] J. Mycielski. Games with perfect information. In Handbook of game theory with economic applications, Vol. I, volume 11 of Handbooks in Econom., pages 41-70. North-Holland, Amsterdam, 1992. doi: 10.1016/S1574-0005(05)80006-2. Cited on pp. 64 and 71.
  • [41] J. Mycielski and S.Świerczkowski. On the Lebesgue measurability and the axiom of determinateness. Fund. Math., 54:67-71, 1964. ISSN 0016-2736. doi: 10.4064/fm-54-1-67-71. Cited on p. 64.
  • [42] J. Nash. Non-cooperative games. Ann. of Math. (2), 54:286-295, 1951. ISSN 0003-486X. doi: 10.2307/1969529. URL https://doi.org/10.2307/1969529. Cited on p. 67.
  • [43] A. S. Nowak. Universally measurable strategies in zero-sum stochastic games. Ann. Probab., 13 (1):269-287, 1985. ISSN 0091-1798. URL http://links.jstor.org/sici?sici=0091-1798(198502)13:1<269:UMSIZS>2.0.CO;2-Q&origin=MSN. Cited on p. 65.
  • [44] A. S. Nowak. Measurable selection theorems for minimax stochastic optimization problems. SIAM J. Control Optim., 23 (3):466-476, 1985. ISSN 0363-0129. doi: 10.1137/0323030. Cited on p. 65.
  • [45] A. S. Nowak. Semicontinuous nonstationary stochastic games. J. Math. Anal. Appl., 117 (1):84-99, 1986. ISSN 0022-247X. doi: 10.1016/0022-247X(86)90250-7. Cited on p. 67.
  • [46] A. S. Nowak. On a new class of nonzero-sum discounted stochastic games having stationary Nash equilibrium points. Internat. J. Game Theory, 32 (1):121-132, 2003. ISSN 0020-7276. doi: 10.1007/s001820200118. Special anniversary issue. Part 2. Cited on p. 69.
  • [47] A. S. Nowak and T. E. S. Raghavan. Existence of stationary correlated equilibria with symmetric information for discounted stochastic games. Math. Oper. Res., 17 (3):519-526, 1992. ISSN 0364-765X. doi: 10.1287/moor.17.3.519. Cited on p. 68.
  • [48] K. Prikry and W. D. Sudderth. Measurability of the value of a parametrized game. Internat. J. Game Theory, 45 (3):675-683, 2016. ISSN 0020-7276. doi: 10.1007/s00182-015-0476-8. Cited on p. 65.
  • [49] C. Ryll-Nardzewski. A theory of pursuit and evasion. In Advances in Game Theory, pages 113-126. Princeton Univ. Press, Princeton, N.J., 1964. Cited on p. 64.
  • [50] C. Ryll-Nardzewski. The works of Hugo Steinhaus on conflict situations. Wiadom. Mat. (2), 17:29-38, 1973. ISSN 0373-8302. doi: 10.14708/wm.v17i01.3109. Papers presented at a Conference in Honor of Hugo Steinhaus (Wrocław, 1972). Cited on p. 64.
  • [51] U. Schwalbe and P. Walker. Zermelo and the early history of game theory. Games Econom. Behav., 34 (1):123-137, 2001. ISSN 0899-8256. doi: 10.1006/game.2000.0794. With an appendix by Ernst Zermelo, translated from German by the authors. MR 1895174. Cited on p. 64.
  • [52] L. S. Shapley. Stochastic games. Proc. Nat. Acad. Sci. U. S. A., 39: 1095-1100, 1953. ISSN 0027-8424. doi: 10.1073/pnas.39.10.1953. Cited on pp. 64 and 65.
  • [53] R. Telgársky. Topological games: on the 50th anniversary of the Banach-Mazur game. Rocky Mountain J. Math., 17 (2):227-276, 1987. ISSN 0035-7596. doi: 10.1216/RMJ-1987-17-2-227. Cited on pp. 64 and 71.
  • [54] H. P. Young and S. Zamir, editors. Handbook of game theory. Vol. 4. Handbooks in Economics. Elsevier/North-Holland, Amsterdam, 2015. ISBN 978-0-444-53766-9. Cited on p. 72.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d55ea5a-262e-480f-890e-04657e82b8fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.