PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental Degradation of Dissimilar Austenitic 316L and Duplex 2205 Stainless Steels Welded Joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes structure and properties of dissimilar stainless steels welded joints between duplex 2205 and austenitic 316L steels. Investigations were focused on environmentally assisted cracking of welded joints. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement was determined in slow strain rate tests (SSRT) with the strain rate of 2.2 × 10−6 s−1. Chloride-inducted SCC was determined in the 35% boiling water solution of MgCl2 environment at 125°C. Hydrogen assisted SCC tests were performed in synthetic sea water under cathodic polarization condition. It was shown that place of the lowest resistance to chloride stress corrosion cracking is heat affected zone at duplex steel side of dissimilar joins. That phenomenon was connected with undesirable structure of HAZ comprising of large fractions of ferrite grains with acicular austenite phase. Hydrogen assisted SCC tests showed significant reduction in ductility of duplex 2205 steel while austenitic 316L steel remains almost immune to degradation processes. SSR tests of dissimilar welded joints revealed a fracture in the area of austenitic steel.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology,18a Konarskiego Str., 44-100 Gliwice, Poland
  • Department of Materials and Welding Engineering, Gdańsk University of Technology, 11/12g. Narutowicza Str., 80-233 Gdańsk, Poland
Bibliografia
  • [1] R. N. Gunn, Duplex stainless steels – microstructure, properties and applications, Woodhead Publishing Ltd, Abington (2003).
  • [2] G. Chai, M. Andersson, Proc. Eng. 55, 123-127 (2013).
  • [3] C. Messner, V. V. Silberschmidt, E. A. Werner, Acta Mater. 51, 1525-1537 (2003).
  • [4] J. Łabanowski, A. Świerczyńska, S. Topolska, Pol. Marit. Res. 21 (4), 108-112 (2014).
  • [5] S. Topolska, J. Łabanowski, Mater. Tehnol. 49 (4), 481-486 (2015).
  • [6] G. Straffelini, A. Molinari, F. Bonollo, A. Tiziani, Mater. Sci. T. 17 (11), 1391-1397 (2001).
  • [7] M. C. Young, S. L. I. Chan, L. W. Tsay, C.-S. Shin, Mater. Chem. Phys. 91 (1), 21-27 (2005).
  • [8] C. San Marchi, B. P. Somerday, X. Zelinski, X. Tang, G.H. Schiroky, Metall. Mater. Trans. A 38A, 2763-2775 (2007).
  • [9] L. Karlsson, S. Rigdal, S. Anderrson, Welding in the World 39, 99-110 (1999).
  • [10] J. Nowacki, P. Rybicki, Journal of Achievements in Materials and Manufacturing Engineering 17, 113-116 (2006).
  • [11] W. Zheng, D. Hardie, Corros. Sci. 32 (1), 23-26 (1991).
  • [12] T. P. Perng, C.J. Altstetter, Metall. Trans. A 18A, 123-134 (1987).
  • [13] R. A. Perren, T. Suter, C. Solenthaler, G. Gullo, P. J. Uggowitzer, H. Böhni, M. O. Speidel, Corros. Sci. 43, 727-745 (2001).
  • [14] F. Zucchi, V. Grassi, C. Monticelli, G. Tabanelli, Corros. Sci. 48, 522-530 (2006).
  • [15] P. Váňová, J. Sojka, METABK 53 (2), 163-166 (2014).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d4f39b3-e2db-45e3-9efd-0902346a0748
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.