PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new modeling of IGBT and Freewheeling diode based on electrical behavioral with independently of time condition

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Nowy model IGBT bazujący na diodzie typu Freewheeling z niezależnym ograniczeniem czasu
Języki publikacji
EN
Abstrakty
EN
Several IGBT model proposed and constructed over the past years have exposed different essential qualities. However, in this paper, a new model of IGBT and Freewheeling diode based on electrical behavior is presented. The proposed parameters extraction process adopts the least squares regression and bilinear interpolation and, a two-level capacitance technique. and the model’s structure solely consists of fundamental components. In addition, the proposed model validates its simplicity for parameters extraction process, and its user-friendly application for a circuit topology of fundamental components. Some key factors of our proposed model are; independent time constraint, implementation flexibility, easily application by different topologies. These enumerated factors reinforce the reliability and suitability of our proposed model for a circuit simulation and optimization. The verification of our proposed model was steered with the use of an experimental circuit that consists of commercial components. Lastly, our simulation results showed a pattern of consistency with the experimental results.
PL
W artykule opisano nowy model IGBT wykorzystujący diodę ruchu swobodnego (freewheeling diode).Model opiera się na niezależnym, ograniczeniu czasu, elastyczności zastosowania I łatwym zastosowaniu w różnych topologiach. Przeprowadzono symulację i optymalizację modelu. Wyniki zweryfikowano eksperymentalnie.
Rocznik
Strony
10--15
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Suranaree University of Technology, Muang Nakhon Ratchasima District, Nakhon Ratchasima, 30000, Thailand
  • Suranaree University of Technology, Muang Nakhon Ratchasima District, Nakhon Ratchasima, 30000, Thailand
  • Suranaree University of Technology, Muang Nakhon Ratchasima District, Nakhon Ratchasima, 30000, Thailand
  • Suranaree University of Technology, Muang Nakhon Ratchasima District, Nakhon Ratchasima, 30000, Thailand
Bibliografia
  • [1] B.J. Baliga, Analysis of insulated gate transistor turn-off characteristics, IEEE Electron Device Letters 6 (1985) 74-77
  • [2] A.R. Hefner, Analytical modeling of device-circuit interactions for the power insulated gate bipolar transistor (IGBT), IEEE Transactions on Industry Applications 26 (1990) 995
  • [3] Z. Shen and T.P. Chow, An analytical IGBT model for power circuit simulation, Proceedings of the 3rd International Symposium on Power Semiconductor Devices and ICs (1991), pp. 79-82
  • [4] J.M. LI, D. LAFORE, J. ARNOULD and B. REYMOND, Analysis of switching behavior of the power insulated gate bipolar transistor by soft modeling, Fifth European Conference on Power Electronics and Applications (1993), pp. 220-225
  • [5] O. Kvien, T.M. Undeland and T. Rogne, Models for simulation of diode (and IGBT) switchings which include the effect of the depletion layer, IEEE Industry Applications Conference Twenty- Eighth IAS Annual Meeting (1993), pp. 1190-1195
  • [6] W. Feiler, W. Gerlach and U. Wiese, Two-dimensional analytical models of the carrier distribution in the on-state of the IGBT, Solid-State Electronics 38 (1995) 1781
  • [7] A.R. Hefner, Modeling buffer layer IGBTs for circuit simulation, IEEE Transactions on Power Electronics 10 (1995) 111
  • [8] Y. Yue, J. J. Liou and I. Batarseh, An analytical insulated-gate bipolar transistor (IGBT) model for steady-state and transient applications under all free-carrier injection conditions, Solid-State Electronics 39 (1996) 1277
  • [9] Kuang Sheng, S.J. Finney and B.W. Williams, A new analytical IGBT model with improved electrical characteristics, IEEE Transactions on Power Electronics 14 (1999) 98
  • [10] P.O. Lauritzen, G.K. Andersen and M. Helsper, A Basic IGBT Model with Easy Parameter Extraction, IEEE 32nd Annual Power Electronics Specialists Conference (2001), pp. 2160-2165
  • [11] F. Iannuzzo and G. Busatto, Physical CAD Model for High- Voltage IGBTs Based on Lumped-Charge Approach, IEEE Transactions on Power Electronics 19 (2004) 885
  • [12] H.-S. Kim, Y.-H. Cho, S.-D. Kim, Y.-I. Choi, Parameter extraction for the static and dynamic model of IGBT, Proceedings of IEEE Power Electronics Specialist Conference (1993), pp. 71-74
  • [13] Ying-Yu Tzou and Lun-Jun Hsu, A practical SPICE macro model for the IGBT, 19th Annual Conference of IEEE Industrial Electronics (1993), pp. 762-766
  • [14] Hyeong-Seok Oh and Mahmoud El Nokali, A new IGBT behavioral model, Solid-State Electronics 45 (2001) 2069
  • [15] A. Haddi, A. Maouad, O. Elmazria, A. Hoffmann and J. P. Charles, A Simplified Spice Model for IGBT, Active and Passive Electronic Components 21 (1998) 279
  • [16] B. Fatemizadeh and D. Silber, A versatile electrical model for IGBT including thermal effects, Proceedings of IEEE Power Electronics Specialist Conference (1993), pp. 85-92
  • [17] A.R. Hefner, A dynamic electro-thermal model for the IGBT, IEEE Transactions on Industry Applications 30 (1994) 394
  • [18] A.R. Hefner and D.M. Diebolt, An experimentally verified IGBT model implemented in the Saber circuit simulator, IEEE Transactions on Power Electronics 9 (1994) 532
  • [19] Z. Shen and T.P. Chow, Modeling and characterization of the insulated gate bipolar transistor (IGBT) for SPICE simulation, Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs (1993), pp. 165-170
  • [20] R. Kraus, P. Turkes and J. Sigg, Physics-based models of power semiconductor devices for the circuit simulator SPICE, 29th Annual IEEE Power Electronics Specialists Conference (1998), pp. 1726-1731
  • [21] F. Chimento, N. Mora, M. Bellini, I. Stevanovic and S. Tomarchio, A simplified spice based IGBT model for power electronics modules evaluation, 37th Annual Conference of the IEEE Industrial Electronics Society (2011), pp. 1155-1160
  • [22] K. Asparuhova and T. Grigorova, IGBT Behavioral PSPICE Model, 25th International Conference on Microelectronics (2006), pp. 203-206
  • [23] Gengyao Li, Hao Wen, Chengcheng Yao, Jin Wang, Xi Lu, Zhuxian Xu, Ke Zou, Jun Kikuchi and Chingchi Chen, A simplified IGBT behavioral model with a tail current module for switching losses estimation, IEEE 18th Workshop on Control and Modeling for Power Electronics (2017), pp. 1-6
  • [24] J.L. Tichenor, S.D. Sudhoff and J.L. Drewniak, A Behavioral IGBT modeling for predicting high frequency effects in motor drives, IEEE Transactions on Power Electronics 15 (2000) 354
  • [25] A. Monti, A fuzzy-based black-box approach to IGBT modelling, Proceedings of Third International Conference on Electronics Circuits and Systems (1996), pp. 1147-1150
  • [26] J.-T. Hsu and K.D.T. Ngo, Behavioral modeling of the IGBT using the Hammerstein configuration, IEEE Transactions on Power Electronics 11 (1996) 746
  • [27] E. Kreyszig, Advanced Engineering Mathematics 10TH, John Wiley & Sons, Inc., 2011
  • [28] S. Chapra and R. Canale, Numerical Methods for Engineers 6TH, McGraw-Hill, 2010
  • [29] N. Kasa, T. Iida and L. Chen, Flyback inverter controlled by sensorless current MPPT for photovoltaic power system, IEEE Transactions on Industrial Electronics 52 (2005) 1145
  • [30] B.-K Lee, J.-W. Jung, B.-S. Suh and D.-S. Hyun, A new halfbridge inverter topology with active auxiliary resonant circuit using insulated gate bipolar transistors for induction heating applications, 28th Annual IEEE Power Electronics Specialists Conference (1997), pp. 1232-1237
  • [31] J.-G. Cho, J.-W. Baek, C.-Y. Jeong and G.-H. Rim, Novel zerovoltage and zero-current-switching full-bridge PWM converter using a simple auxiliary circuit, IEEE Transactions on Industry Applications 35 (1999) 15
  • [32] H.W. Koertzen, J.D. van Wyk and J.A. Ferreira, Design of the half-bridge, series resonant converter for induction cooking, Power Electronics Specialist Conference (1995), pp. 729-735
  • [33] E.J. Dede, J. Jordan, V. Esteve, A.E. Navarro and A. Ferreres, On the design of a high power IGBT series resonant inverter for induction forging applications, Proceedings of IEEE. AFRICON '96 (1996), pp. 206-208
  • [34] N.S. Bayindir, O. Kükrer and M. Yakup, DSP-based PLLcontrolled 50–100 kHz 20 kW high-frequency induction heating system for surface hardening and welding applications, IEE Proceedings - Electric Power Applications 150 (2003) 365
  • [35] K. Ishikawa, K. Suda, M. Sasaki and H. Miyazaki, A 600V driver IC with new short protection in hybrid electric vehicle IGBT inverter system, The 17th International Symposium on Power Semiconductor Devices and ICs (2005), pp. 59-62
  • [36] R. Jain, R. Kasturi and B. G. Schunck, MACHINE VISION, McGraw-Hill, 1995
  • [37] Regmi R., Application of differential equation in L-R and C-R circuit analysis by classical method, Janapriya Journal of Interdisciplinary Studies 5 (2017) 114
  • [38] Fuji Electric. IGBT-2MBI100VA-120-50. https://docs-apac.rsonline. com/webdocs/1162/0900766b8116260c.pdf
  • [39] S. K. Lam, A. Pitrou and S. Seibert, Numba: a LLVM-based Python JIT compiler, Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (2015), pp. 1-6
  • [40] F. N. Najm, Circuit Simulation, John Wiley & Sons, Inc., 2010
  • [41] R. Johansson, Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib, Apress, 2018
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d4eeb3b-a239-42a2-b5c3-7acdc6bd3c84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.