Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The question under consideration is Gevrey summability of formal power series solutions to the third and fifth Painlevé equations near infinity.We consider the fifth Painlevé equation in two cases: when αβγδ ≠ 0 and when αβγ ≠ 0, δ =0 and the third Painlevé equation when all the parameters of the equation are not equal to zero. In the paper we prove Gevrey summability of the formal solutions to the fifth Painlevé equation and to the third Painlevé equation, respectively.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
591--599
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- National Research University Higher School of Economics Bolshoi Trekhsvjatitelskii per. 3, Moscow, 109028, Russia
Bibliografia
- [1] A.D. Bruno, Asymptotic behavior and expansions of solutions to an ordinary differential equation, Uspekhi Mat. Nauk 59 (2004) 3, 31–80; English transl.: Russian Math. Surveys 59 (2004), 429–480.
- [2] A.D. Bruno, Exponential expansions of solutions to an ordinary differential equation, Dokl. Akad. Nauk 443 (2012) 5, 539–544; English transl.: Doklady Mathematics 85 (2012) 2, 259–264.
- [3] A.D. Bruno, A.V. Parusnikova, Expansions of solutions to the fifth Painlevé equation in a neighbourhood of its nonsingular point, Dokl. Akad. Nauk 442 (2012) 5, 582–589; English transl.: Doklady Mathematics 85 (2012) 1, 87–92.
- [4] A.D. Bruno, A.V. Parusnikova, Local expansions of solutions to the fifth Painlevé equation, Dokl. Akad. Nauk 438, no. 4, 439–443; English transl.: Doklady Mathematics 83 (2011), 348–352.
- [5] V.I. Gromak, I. Laine, S. Shimomoura, Painleve Differential Equations in the Complex Plane, Walter de Gruter, Berlin, New York, 2002, 303 p.
- [6] B. Malgrange, Sur le théorème de Maillet, Asymptot. Anal. 2 (1989), 1–4.
- [7] A.V. Parusnikova, Asymptotic expansions of solutions to the fifth Painlevé equation in neighbourhoods of singular and nonsingular points of the equation, [in:] Banach Center Publications. Vol. 97: Formal and Analytic Solutions of Differential and Difference Equations, Polish Academy of Sciences, Warszawa, 2012, 113–124.
- [8] O. Perron, Uber lineare und Differentialgleichungen mit rationalen Koeffizienten, Acta Math. 34 (1910), 139–163.
- [9] J.-P. Ramis, Dévissage Gevrey, Journées singuliéres de Dijon, Astérisque 59–60 (1978), 173–204.
- [10] J.P. Ramis, Y. Sibuya, Hukuhara domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type, Asymptotic Analysis 2 (1989), 39–84
- [11] J.P. Ramis, Divergent series and asymptotic theory, Institute of Computer Research, Moscow-Ijevsk, 2002 [in Russian].
- [12] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, Providence: AMS, 1985.
- [13] N.Ya. Vilenkin, A.N. Vilenkin, P.A. Vilenkin, Combinatorika, FIMA, MCCME, 2006. 400 p. [in Russian].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d4e742f-c4ba-4988-a7a1-9bf7d6ad159c