PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling Gum Metal and other newly developed titanium alloys within a new class of constitutive relations for elastic bodies

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many titanium alloys and even materials such as concrete exhibit a nonlinear relationship between strain and stress, when the strain is small enough that the square of the norm of the displacement gradient can be ignored in comparison to the norm of the displacement gradient. Such response cannot be described within the classical theory of Cauchy elasticity wherein a linearization of the nonlinear strain leads to the classical linearized elastic response. A new framework for elasticity has been put into place in which one can justify rigorously a nonlinear relationship between the linearized strain and stress. Here, we consider one such model based on a power-law relationship. Previous attempts at describing such response have been either limited to the response of one particular material, e.g. Gum Metal, or involved a model with more material moduli, than the model considered in this work. For the uniaxial response of several metallic alloys, the model that is being considered fits experimental data exceedingly well.
Rocznik
Strony
223--241
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Mathematical Institute Faculty of Mathematics and Physics Charles University Sokolovská 83, 186 75 Prague, Czech Republic
autor
  • Mathematical Institute Faculty of Mathematics and Physics Charles University Sokolovská 83, 186 75 Prague, Czech Republic
  • Department of Mechanical Engineering Texas A&M University College Station, TX, 77843, U.S.A.
Bibliografia
  • 1. N. Nagasako, R. Asahi, J. Hafner, First-principles Study of Gum-Metal Alloys: Mechanism of Ideal Strength, R&D Review of Toyota CRDL, 44, 61–68, 2013.
  • 2. R.J. Talling, R.J. Dashwood, M. Jackson, D. Dye, On the mechanism of superelasticity in Gum metal, Acta Materialia, 57, 1188–1198, 2009.
  • 3. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma, Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism, Science, 300, 464–467, 2003.
  • 4. N. Sakaguch, M. Niinomi, T. Akahori, Tensile deformation behavior of Ti-Nb-Ta-Zr biomedical alloys, Materials Transactions, 45, 1113–1119, 2004.
  • 5. Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, Q.M. Hu, R. Yang, Super-elastic titanium alloy with unstable plastic deformation, Applied Physics Letters, 87, 91906–91906, 2005.
  • 6. F.Q. Hou, S.J. Li, Y.L. Hao, R. Yang, Nonlinear elastic deformation behaviour of Ti-30Nb-12Zr alloys, Scripta Materialia, 63, 54–57, 2010.
  • 7. K.R. Rajagopal, On implicit constitutive theories, Applications of Mathematics, 48, 279–319, 2003.
  • 8. K.R. Rajagopal, The elasticity of elasticity, Zeitschrift für angewandte Mathematik und Physik, 58, 309–317, 2007.
  • 9. K.R. Rajagopal, A.R. Srinivasa, On the response of non-dissipative solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463, 357–367, 2007.
  • 10. K.R. Rajagopal, A.R. Srinivasa, On a class of non-dissipative materials that are not hyperelastic, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465, 493–500, 2009.
  • 11. H. Moon, C. Truesdell, Interpretation of adscititious inequalities through the effects pure shear stress produces upon an isotropic elastic solid, Archive for Rational Mechanics and Analysis, 55, 1–17, 1974.
  • 12. K.R. Rajagopal, On the nonlinear elastic response of bodies in the small strain range, Acta Mechanica, 225, 1545–1553, 2014.
  • 13. V.K. Devendiran, R.K. Sandeep, K. Kannan, K.R. Rajagopal, A thermodynamically consistent constitutive equation for describing the response exhibited by several alloys and the study of a meaningful physical problem, International Journal of Solids and Structures, 108, 1–10, 2017.
  • 14. J.C. Criscione, J.D. Humphrey, A.S. Douglas, W.C. Hunter, An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity, Journal of the Mechanics and Physics of Solids, 48, 2445–2465, 2000.
  • 15. J.C. Criscione, Rivlin’s representation formula is ill-conceived for the determination of response functions via biaxial testing, [in:] The Rational Spirit in Modern Continuum Mechanics, C.-S. Man, R.L. Fosdick [Eds.], Springer Netherlands, pp. 197–215, 2004.
  • 16. C. Bridges, K.R. Rajagopal, Implicit constitutive models with a thermodynamic basis: a study of stress concentration, Zeitschrift für angewandte Mathematik und Physik, 66, 191–208, 2014.
  • 17. M. Bulíček, J. Málek, K.R. Rajagopal, E. Süli, On elastic solids with limiting small strain: modelling and analysis, EMS Surv. Math. Sci, 1, 293–342, 2014.
  • 18. V. Kulvait, Mathematical analysis and computer simulations of deformation of nonlinear elastic bodies in the small strain range, Charles University, Faculty of Mathematics and Physics, Prague, Ph.D. Thesis, 2017.
  • 19. R Development Core Team, R: A Language and Environment for Statistical Computing, Reference Index, http://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf, 2016 (available online).
  • 20. J.M. Chambers, T. Hastie, Statistical Models in S, Wadsworth & Brooks/Cole Advanced Books & Software, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d4c2799-f226-41d3-b84d-0f18a983b3a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.