PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparing effect of phytoplankton and a charophyte on calcite precipitation in lake water: experimental approach

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Primary producers are able to strongly affect calcium budget in hardwater lakes. The relative contribution of phytoplankton and charophytes to water decalcification (by precipitation of calcium carbonate) is, however, unclear. In this study we checked the effect of natural phytoplankton community and a charophyte (Nitellopsis obtusa) on the decline of calcium concentration in experimental outdoor conditions. The experiment was carried out in original lake water and two variants of enrichment with inorganic nitrogen and phosphorus to test the changing efficiency in decalcification by both primary producers. At low nutrient concentrations, N. obtusa was responsible for calcium decline in original lake water by 12 mg Ca+2 dm-3 during 20 days of experiment. In these conditions the effect of phytoplankton was negligible. In lake water enriched with nutrients, the exponential growth of phytoplankton led to the decrease of calcium concentration from initial 35 mg Ca+2 dm-3 to 9 mg Ca+2 dm-3 in the same time period. The maximum effect of N. obtusa was the same as in original lake water but manifested itself earlier to decline in the end of experiment. Supersaturation of water with calcium carbonate was always more than threefold and saturation index reached 27 in mixed cultures of phytoplankton and N. obtusa in lake water enriched with nutrients. In this context we hypothesise on a possible role of charophytes as nucleation sites necessary for calcite precipitation. Based on our own and literature data we also discuss expected immobilisation of phosphate incorporated in calcite precipitated by the growth of phytoplankton and N. obtusa.
Rocznik
Strony
431--439
Opis fizyczny
Bibliogr. 21 poz., il.
Twórcy
autor
  • Department of Ecology and Environmental Protection, University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
autor
  • Department of Ecology and Environmental Protection, University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland,
Bibliografia
  • 1. Blindow I. 1992 – Decline of charophytes during eutrophication: comparison with angiosperms - Freshw. Biol. 28: 9–14.
  • 2. Danen-Louwerse H.J., Lijklema L., Coenraats M. 1995 – Coprecipitation of phosphate with calcium carbonate in Lake Veluwe - Water Res. 29: 1781–1785.
  • 3. Dittrich M., Koschel R. 2002 – Interactions between calcite precipitation (natural or artificial) and phosphorus cycle in the hardwater lake – Hydrobiologia, 469: 49–57.
  • 4. Dittrich M., Obst M. 2004 – Are picoplankton responsible for calcite precipitation in lakes? – Ambio, 33: 559–564.
  • 5. Golterman H.L. 1969 – Methods for Chemical Analysis of Fresh Waters – Blackwell Scientific Publications, Oxford and Edinburgh, 172 pp.
  • 6. Koschel R. 1990 – Pelagic calcite precipitation and trophic state of hardwater lakes – Arch. Hydrobiol. Beih. 33: 713–722.
  • 7. Królikowska J. 1997 – Eutrophication processes in a shallow, macrophyte-dominated lake - species differentiation, biomass and the distribution of submerged macrophytes in lake Łuknajno (Poland) – Hydrobiologia, 342/343: 411–416.
  • 8. Kufel I., Kufel L. 1997 – Eutrophication processes in a shallow, macrophyte-dominated lake – nutrient loading to and flow through Lake Łuknajno (Poland) – Hydrobiologia, 342/343: 387-394.
  • 9. Kufel L., Biardzka E., Strzałek M. 2013 - Calcium carbonate incrustation and phosphorus fractions in five charophyte species – Aquat. Bot. 109: 54–57.
  • 10. Murphy T.P., Kali K.J., Yesaki I. 1983 – Coprecipitation of phosphate with calcite in a naturally eutrophic lake – Limnol. Oceanogr. 28: 56–96.
  • 11. Nõges P., Tuvikene L., Feldmann T., Tõnno I., Künnap H., Luup H., Salujõe J., Nõges T. 2003 – The role of charophytes in increasing water transparency: a case study of two shallow lakes in Estonia – Hydrobiologia, 506–509: 567–573.
  • 12. Otsuki A., Wetzel R.G. 1972 – Coprecipitation of phosphate with carbonates in a marl lake – Limnol. Oceanogr. 17: 763–767.
  • 13. Ozimek T., Kowalczewski A. 1984 – Longterm changes of the submerged macrophytes in eutrophic Lake Mikołajskie (North Poland) – Aquat. Bot. 19: 1–11.
  • 14. Pełechaty, M., Pukacz A., Apolinarska K., Pełechata A., Siepak M. 2013 – The significance of Chara vegetation in the precipitation of lacustrine calcium carbonate – Sedimentology, 60: 1017–1035.
  • 15. Pentecost A. 1984 – The growth of Chara globularis and its relationship to calcium carbonate deposition in Malham Tarn – Field Studies, 6: 53–58.
  • 16. Richter D., Gross E.M. 2013 – Chara can outcompete Myriophyllum under low phosphorus supply – Aquat. Sci. 75: 457–467.
  • 17. Rzepecki M. 2010 – The dynamics of phosphorus in lacustrine sediments: contents and fractions in relation to lake trophic state and chemical composition of bottom sediments – Pol. J. Ecol. 58: 409–427.
  • 18. Scheffer M. 1998 – The Ecology of Shallow Lakes – Chapman and Hall, 357 pp.
  • 19. Stabel H.-H. 1986 – Calcite precipitation in Lake Constance: chemical equilibrium, sedimentation, and nucleation by algae – Limnol. Oceanogr. 31: 1081–1093.
  • 20. Strong A.E., Eadie B.J. 1978 – Satellite observations of calcium carbonate precipitations in the Great Lakes – Limnol. Oceanogr. 23: 877–887.
  • 21. Wetzel R.G. 2001 – Limnology: lake and river ecosystems. 3rd edition – Academic Press, San Diego, 1006 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d495dc0-4440-4874-9b95-af951da85aa9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.