PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical models of hierarchical threshold secret sharing and broadcasting with encryption

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper there are presented two new models of encrypted hierarchical secret sharing schemes based on barycentric Hermite formula. Moreover an application of the second scheme to design a novel broadcast encryption protocol is proposed. The protocol allows to send a decoding key to any user via broadcast channel and revoke some users without the necessity of updating encrypted private keys of the other users of the system. To ensure the safety of user private keys the protocol uses one-way functions that fulfill special conditions.
Rocznik
Strony
57--72
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • The John Paul II Catholic University of Lublin, Institute of Mathematics and Computer Science, ul. Konstantynow 1H, 20-708 Lublin, Poland
  • The John Paul II Catholic University of Lublin, Institute of Mathematics and Computer Science, ul. Konstantynow 1H, 20-708 Lublin, Poland
Bibliografia
  • [1] D. Boneh (1998), The decision Diffe-Hellman problem, Lecture Notes in Computer Science 1423, 48 - 63.
  • [2] J.C. Butcher, R.M. Corless, L. Gonzalez-Vega, A. Shakoori (2011), Polynomial algebra for Birkhoff interpolants. Numerical Algorithms 56, 319 - 347.
  • [3] V. Daza, J. Herranz, P. Morillo, C. Ráfols (2008), Ad-hoc threshold broadcast encryption with shorter ciphertexts, Electronic Notes in Theoretical Computer Science 192 (2), 3 - 15.
  • [4] P. Feldman (1987), A practical scheme for non-interactive verifiable secret sharing, IEEE Symposium on Foundations of Computer Science, 427 - 437.
  • [5] A. Fiat, M. Naor (1993), Broadcast encryption, Lecture Notes in Computer Science 773, 480 - 491.
  • [6] J. Kapusta (2010), Algorithms for polynomial transformation and its applications, Ph. D. dissertation, System Research Institute Polish Academy of Sciences, in Polish.
  • [7] N. Kogan, T. Tassa (2006), Improved effciency for revocation schemes via Newton interpolation, ACM Transactions on Information and System Security 9, 461 - 486.
  • [8] L. Krzywiecki, M. Kutylowski, M. Nikodem (2007), General anonymous key broadcasting via Lagrangian interpolation , 1st International Workshop on Group-Oriented Cryptographic Protocols, IET Information Security 2 (3), 79 - 84.
  • [9] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone (2005), Handbook of Applied Cryptography.
  • [10] M. Naor, B. Pinkas (2000), Effcient trace and revoke schemes, Financial Cryptography 2000. Lecture Notes in Computer Science 1962, 1 - 20.
  • [11] M. Naor, B. Pinkas (2010), Effcient trace and revoke schemes, International Journal of Information Security 9 (6), 411 - 424.
  • [12] J. Pieprzyk, T. Hardjono, J. Seberry (2003), Fundamentals of Computer Security, Springer Verlag.
  • [13] B. Sadiq, D. Viswanath (2013), Barycentric Hermite Interpolation, Numerical Analysis, SIAM Journal on Scientific Computing 35, 1254 - 1270.
  • [14] C. Schneider, W. Werner (1991), Hermite interpolation: The barycentric approach, Computing 46 (1), 35 - 51.
  • [15] A. Shamir (1979), How to share a secret, Communications of the ACM 22 (11), 612 - 613.
  • [16] R. Smarzewski, J. Kapusta (2005), Algorithms for multi-secret hierarchical sharing schemes of Shamir type, Annales UMCS Informatica AI III, 65 - 91.
  • [17] R. Smarzewski, J. Kapusta (2007), Fast Lagrange-Newton transformations, Journal of Complexity 23 (3), 336 - 345.
  • [18] D. R. Stinson (1995), Cryptography Theory and Practice, CRC Press.
  • [19] J. Stoer, R. Bulirsch (2002), Introduction to Numerical Analysis, Springer.
  • [20] T. Tassa (2007), Hierarchical Threshold Secret Sharing, Journal of Cryptology 20 (2), 237 - 264.
  • [21] W. Tzeng, H. Tzeng (2005), A public-key traitor tracing scheme with revocation using dynamic shares, Designs, Codes and Cryptography 35, 47 - 61.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d43d819-946f-498e-9af3-5bada25256c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.