PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

"Battery of Bioassays" for Diagnostics of Toxicity of Natural Water when Pollution with Aluminum Compounds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of an experimental comparison of the sensitivity of biotests using Daphnia magna Straus, Ceriodaphnia affinis Lilljeborg, Paramecium caudatum Ehrenberg, and Escherichia coli Migula (strain M-17) to water pollution with aluminum compounds. The research was carried out under simulated conditions: the model toxicant was aluminum sulfate Al2(SO4)3∙18H2O, the concentration range per Al was 0.04–2.8 mg/dm3, and the pH of the tested waters was close to the neutral level of 7.2–7.8. The bioluminescence of E. coli significantly decreased at an Al concentration of 0.8 mg/dm3 (toxicity index was 93.3±1.2, which refers to a high level of toxicity). The reaction of P. caudatum was weaker: a high level of toxicity was achieved at an Al concentration of 2.8 mg/dm3. These doses did not cause the death of D. magna and C. affinis in short-term experiments (28 and 96 hours, respectively). However, in the tests for the chronic toxicity of aluminum, we showed that the doses of 0.8 and 2 mg/dm3 Al cause high death of individuals (more than 50%) and a significant decrease in the number of offspring. The range of sensitivity of the bioassay methods to water pollution with aluminum turned out to be as follows: bioassay for the bioluminescence of E. coli > bioassay for the changes in chemotaxis of P. caudatum > bioassay for the changes in fertility of D. magna > bioassay for the changes in fertility of C affinis.
Rocznik
Strony
195--199
Opis fizyczny
Bibliogr. 18 poz., tab.
Twórcy
autor
  • Department of Ecology and Nature Management, Institute of Chemistry and Ecology, Vyatka State University, Krasnoarmeyskaya Str. 26, Kirov, 610001, Kirov region, Russia
  • Department of Ecology and Nature Management, Institute of Chemistry and Ecology, Vyatka State University, Krasnoarmeyskaya Str. 26, Kirov, 610001, Kirov region, Russia
Bibliografia
  • 1. Gad S.C. (Ed.) 2016. Animal Models in Toxicology. by . 3rd ed. Boca Raton, FL: CRC Press, 1152 p..
  • 2. Arnolds, J.L., Snyman, R.G., Odendaal, J.Ph. 2018. Bioaccumulation of Al, Cu and Zn in Coontail (Ceratophyllum demersum L.) after experimental exposure to a metal cocktail “pollution event”. Fresenius Environmental Bulletin, 27(2), 928–937.
  • 3. Cardwell, A.S., Adams, W.J., Gensemer, R.W., Nordheim, E., Santore, R.C., Ryan, A.C., Stubblefield, W.A. 2018. Chronic Toxicity of Aluminum, at a pH of 6, to Freshwater Organisms: Empirical Data for the Development of International Regulatory Standards/Criteria. Environmental Toxicology and Chemistry, 37(1), 36–48, DOI: 10.1002/etc.3901
  • 4. Chen, J., Fan, R., Wang, Y.H., Huang, T., Shang, N., He, K.H., Zhang, P., Zhang, L., Niu, Q., Zhang, Q.L. 2020. Progressive impairment of learning and memory in adult zebrafish treated by Al2O3 nanoparticles when in embryos. Chemosphere, 254, 126608, DOI: 10.1016/j.chemosphere.2020.126608
  • 5. Dorea, J.G. 2020. Neurotoxic effects of combined exposures to aluminum and mercury in early life (infancy). Environmental Research, 188, 109734, DOI: 10.1016/j.envres.2020.109734
  • 6. Environmental Regulatory Document PND F T 14.1:2:3:4.11–04. T.16.1:2:3:3.8–04. 2010. Method for determining the integrated toxicity of surface waters, including marine, ground, drinking, waste waters, water extracts from soils, waste, sewage sludge by changes in bacterial bioluminescence using the “Ecolum test-system”. Moscow: Nera-S, 30 p.
  • 7. Federal Register FR 1.39.2007.03222. 2007. Methodology for determining the toxicity of water and water extracts from soils, sewage sludge, and waste by mortality and changes in fertility of daphnias. Moscow: Akvaros, 51 p.
  • 8. Federal Register FR 1.39.2015.19242. 2015. Environmental Regulatory Document PND F T 16.2:2.2–98. Methodology for determining the toxicity of samples of natural, drinking, domestic and drinking, household waste, treated sewage, waste, thawed, technological water by the express method using the Biotester device. St. Petersburg: SPEKTR-M, 21 p.
  • 9. Kannaujiya, V.K., Kumar, D., Pathak, J., Rajneesh, Sinha, R.P. 2020. Physiological and Biochemical Response of a Hot-Spring CyanobacteriumNostocSp. Strain HKAR-2 to Aluminum Toxicity. Water Air and Soil Pollution, 231(7), 359, DOI: 10.1007/ s11270–020–04739-z
  • 10. Lankoff, A., Banasik, A., Duma, A., Ochniak, E., Lisowska, H., Kuszewski, T., Góźdź, S. and Wojcik, A. 2006. A comet assay study reveals that aluminium induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes. Toxicol. Lett., 161, 27–36.
  • 11. Lima, P.D.L., Leite, D.S., Vasconcellos, M.C., Cavalcanti, B.C., Santos, R.A., Costa-Lotufo, L.V., Pessoa, C., Moraes, M.O. and Burbano, R.R. 2007. Genotoxic effects of aluminium chloride in cultured human lymphocytes treated in different phases of cell cycle. Food Chem. Toxicol., 45, 1154–1159.
  • 12. Ochoa, L., Zuverza-Mena, N., Medina-Velo, I.A., Flores-Margez, J.P., Peralta-Videa, J.R., Gardea-Torresdey, J.L. 2018. Copper oxide nanoparticles and bulk copper oxide, combined with indole-3-acetic acid, alter aluminum, boron, and iron in Pisum sativum seeds. Science of the Total Environment, 634, 1238–1245, DOI: 10.1016/j.scitotenv.2018.04.003
  • 13. Olkova, A. Zimonina, N. 2020. Assessment of the toxicity of the natural and technogenic environment for motor activity of Daphnia magna. Journal of Ecological Engineering, 21(7), 11–16, DOI: 10.12911/22998993/125459
  • 14. Pandard, P., Devillers, J., Charissou, A.M., Poulsen, V. 2006. Selecting a battery of bioassays for ecotoxicological characterization of wastes. Science of the Total Environment, 363, 114–125.
  • 15. Poganyova, A., Kerekes, E., Micieta, K. 2017. The ecogenotoxic plant biomonitoring of a long-term polluted area in central Slovakia. Environmental Science and Pollution Research, 24(35), 27376–27383, DEC DOI: 10.1007/s11356–017–0353-z
  • 16. Santos, R.J., Vieira, M.T. 2017. Assessment of airborne nanoparticles present in industry of aluminum surface treatments. Journal of Occupational and Environmental Hygiene, 14(3), D29-D36, DOI: 10.10 80/15459624.2016.1254782
  • 17. Tyantova E.N., Burukhin S.B., Synzynys B.I., Kozmin G.V. 2005. The chemistry of Aluminum in the environment. Agrochemistry, 2, 87–93.
  • 18. Zovko, M., Vidaković-Cifrek, Ž., Cvetković, Ž., Bošnir, J. 2015. Assessment of acrylamide toxicity using a battery of standardised bioassays. Archives of Industrial Hygiene and Toxicology, 66, 315–321. DOI 10.1515/aiht-2015–66–2715
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d3f068d-e8b9-49ca-a503-cffef9112e30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.