PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase transition, microstructural evolution and mechanical properties of Ti–6Al–4V and Ti–6.5Al–3.5Mo–1.5Zr–0.3Si joints brazed with Ti–Zr–Ni–Cu filler metal

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ti–6Al–4V (TC4) and Ti–6.5Al–3.5Mo–1.5Zr–0.3Si (TC11) joints were achieved via Ti–37.5Zr–15Ni–10Cu (wt%) filler metal when the brazing temperature was in the range from 950 °C (below β-transus) to 1040 °C (above β-transus) for 10–60 min. The role of brazing parameters in the microstructure evolution as well as mechanical properties of both base alloys and brazed joints was studied. The research analysis suggested that the typical interfacial microstructure was divided into five characteristic zones including reaction phases of α-Ti, β-Ti and (Ti, Zr)2CuNi. With the holding time prolonged, the sectionalized structure transformed into lamellar Widmanstätten structure in the brazing seam at the temperature of 950 °C, and the optimized shear strength reached 616 MPa at 950 °C for 60 min. Nevertheless, when increasing the brazing temperature to 1000 °C, the joint shear strength tended to be stable as the holding time exceeded 20 min due to the elemental homogenization, and the shear strength reached 627 MPa for the holding time of 20 min. Tensile test results showed that the mechanical properties of both TC4 and TC11 alloys were dramatically degraded at the heat treatment temperature of 1000 °C owning to the drastic grain coarsening and phase transition. Additionally, the plastic strain of TC4/TC11 joint brazed at 1000 °C for 20 min was 1.66%, while that of joint brazed at 950 °C for 60 min reached 2.01%. The variation in mechanical properties of base alloys as well as brazed joints under different thermal conditions revealed that the optimized temperature for brazing of titanium alloys was lower than β-transus with a long time.
Rocznik
Strony
353--367
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
  • National Experiment Teaching Demonstration Center of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
  • National Experiment Teaching Demonstration Center of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Bibliografia
  • [1] Zhao P, Fu L, Chen H. Low cycle fatigue properties of linear friction welded joint of TC11 and TC17 titanium alloys. J Alloy Compd. 2016;675:248–56. https ://doi.org/10.1016/j.jallcom.2016.03.113.
  • [2] Yadroitsev I, Krakhmalev P, Yadroitsava I. Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. J Alloy Compd. 2014;583:404–9. https ://doi.org/10.1016/j.jallc om.2013.08.183.
  • [3] Song HW, Zhang SH, Cheng M. Dynamic globularization kinetics during hot working of a two phase titanium alloy with a colony alpha microstructure. J Alloy Compd. 2009;480(2):922–7. https://doi.org/10.1016/j.jallc om.2009.02.059.
  • [4] Wang T, Yu B, Han K, Peng F, Jiang S, Zhao H, et al. Effect of heat input on microstructure and mechanical properties of Ti/Cu66V34/Cu joints by electron beam welding. J Manuf Process. 2019;45:147–53. https ://doi.org/10.1016/j.jmapr o.2019.07.005.
  • [5] Hao X, Dong H, Li S, et al. Lap joining of TC4 titanium alloy to 304 stainless steel with fillet weld by GTAW using copper-based filler wire. J Mater Process Technol. 2018;257:88–100. https ://doi.org/10.1016/j.jmatp rotec .2018.02.020.
  • [6] Song X, Ben B, Hu S, Feng J, Tang D. Vacuum brazing high Nb-containing TiAl alloy to Ti60 alloy using Ti-28Ni eutectic brazing alloy. J Alloy Compd. 2017;692:485–91. https ://doi.org/10.1016/j.jallc om.2016.09.074.
  • [7] Wang XR, Yang YQ, Luo X, Zhang W, Zhao GM, Huang B. An investigation of Ti–43Al–9V/Ti–6Al–4V interface by dif-fusion bonding. Intermetallics. 2013;36:127–32. https ://doi.org/10.1016/j.inter met.2012.12.018.
  • [8] Chan HY, Liaw DW, Shiue RK. The microstructural observation of brazing Ti–6Al–4V and TZM using the BAg-8 braze alloy. Int J Refract Metal Hard Mater. 2004;22(1):27–33. https ://doi.org/10.1016/j.ijrmh m.2003.11.002.
  • [9] Chen X, Yan J, Gao F, Wei J, Xu Z, Fan G. Interaction behaviors at the interface between liquid Al–Si and solid Ti–6Al–4V in ultra-sonic-assisted brazing in air. Ultrason Sonochem. 2013;20(1):144–54. https ://doi.org/10.1016/j.ultso nch.2012.06.011.
  • [10] Yang TY, Shiue RK, Wu SK. Infrared brazing of Ti50Ni50 shape memory alloy using pure Cu and Ti–5Cu–15Ni foils. Interme-tallics. 2004;12(12):1285–92. https ://doi.org/10.1016/j.intermet.2004.03.020.
  • [11] Chang CT, Du YC, Shiue RK, Chang CS. Infrared brazing of high-strength titanium alloys by Ti–15Cu–15Ni and Ti–15Cu–25Ni filler foils. Mater Sci Eng A. 2006;420(1):155–64. https ://doi.org/10.1016/j.msea.2006.01.046.
  • [12] Pang S, Sun L, Xiong H, Chen C, Liu Y, Li H, et al. A multi-component TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy. Scripta Mater. 2016;117:55–9. https ://doi.org/10.1016/j.scrip tamat .2016.02.006.
  • [13] Ganjeh E, Sarkhosh H, Bajgholi ME, Khorsand H, Ghaffari M. Increasing Ti–6Al–4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys. Mater Charact. 2012;71:31–40. https ://doi.org/10.1016/j.match ar.2012.05.016.
  • [14] Ganjeh E, Sarkhosh H. Microstructural, mechanical and fracto-graphical study of titanium-CP and Ti–6Al–4V similar brazing with Ti-based filler. Mater Sci Eng A. 2013;559:119–29. https ://doi.org/10.1016/j.msea.2012.08.043.
  • [15] Chang CT, Wu ZY, Shiue RK, Chang CS. Infrared brazing Ti–6Al–4V and SP-700 alloys using the Ti–20Zr–20Cu–20Ni braze alloy. Mater Lett. 2007;61(3):842–5. https ://doi.org/10.1016/j.matle t.2006.05.077.
  • [16] Shapiro A, Rabinkin A. State of the art of titanium-based brazing filler metals. Weld J. 2003;82(10):36–433.
  • [17] Zhang H, Li J, Ma P, Xiong J, Zhang F. Study on microstructure and impact toughness of TC4 titanium alloy diffusion bonding joint. Vacuum. 2018;152:272–7. https ://doi.org/10.1016/j.vacuum.2018.03.019.
  • [18] Gu Y, Zeng F, Qi Y, Xia C, Xiong X. Tensile creep behavior of heat-treated TC11 titanium alloy at 450–550 °C. Mater Sci Eng A. 2013;575:74–85. https://doi.org/10.1016/j.msea.2013.03.038.
  • [19] Lee MK, Lee JG. Mechanical and corrosion properties of Ti–6Al–4V alloy joints brazed with a low-melting-point 62.7Zr–11.0Ti–13.2Cu–9.8Ni–3.3Be amorphous filler metal. Mater Charact. 2013;81:19–27. https ://doi.org/10.1016/j.match ar.2013.04.002.
  • [20] Yuan L, Xiong JT, Du YJ, et al. Effects of pure Ti or Zr powder on microstructure and mechanical properties of Ti6Al4V and Ti2AlNb joints brazed with TiZrCuNi. Mater Sci Eng A. 2020. https ://doi.org/10.1016/j.msea.2020.13960 2.
  • [21] Lee MK, Kim KH, Lee JG, Rhee CK. Growth of isothermally-solidified titanium joints using a multi-component Zr–Ti–Cu–Ni–Be amorphous alloy as a brazing filler. Mater Charact. 2013;80:98–104. https ://doi.org/10.1016/j.match ar.2013.03.015.
  • [22] Wang Y, Jiao M, Yang Z, Wang D, Liu Y. Vacuum brazing of Ti2AlNb and TC4 alloys using Ti–Zr–Cu–Ni and Ti–Zr–Cu–Ni + mo filler metals: microstructural evolution and mechanical properties. Arch Civil Mech Eng. 2018;18(2):546–56. https ://doi.org/10.1016/j.acme.2017.10.006.
  • [23] Appolaire B, Héricher L, Aeby-Gautier E. Modelling of phase transformation kinetics in Ti alloys-isothermal treatments. Acta Mater. 2005;53(10):3001–11. https ://doi.org/10.1016/j.actamat.2005.03.014.
  • [24] Sun Z, Guo S, Yang H. Nucleation and growth mechanism of α-lamellae of Ti alloy TA15 cooling from an α+β phase field. Acta Mater. 2013;61(6):2057–64.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d3dc83e-0f39-423f-ab50-fc006c94aff2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.