Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the possibilities of improving the mechanical and corrosion properties of Mg-4Li-1Ca processed using twist channel angular pressing (TCAP) were investigated. There was a special focus on the optimization of the TCAP parameters through analyzing how the temperature of TCAP influences the microstructural, mechanical, and corrosion properties of the alloy, and how an increasing number of TCAP passes affects these properties. It was shown that among specimens extruded with one pass, the highest mechanical properties were achieved at 180 °C. Microstructural changes were noted at higher temperatures and caused a decline in the mechanical properties. The influence of an increasing number of passes through the TCAP channel was rather minor and did not lead to significant microstructural strengthening. In contrast, the best corrosion performance was observed after four passes at 180 °C and after a single pass at 300 °C. The results of this study show that TCAP is an efficient method for the grain refinement of hcp-structured metals, lowering the costs of the plastic deformation of Mg-based alloys.
Czasopismo
Rocznik
Tom
Strony
art. no. e89, 2024
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Material Science, Silesian University of Technology, Gliwice, Poland
autor
- Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw, Poland
autor
- Faculty of Mechanical Engineering, VSB - Technical University of Ostrava, Ostrava, Czech Republic
autor
- Faculty of Mechanical Engineering, VSB - Technical University of Ostrava, Ostrava, Czech Republic
autor
- Faculty of Mechanical Engineering, VSB - Technical University of Ostrava, Ostrava, Czech Republic
autor
- Faculty of Mechanical Engineering, VSB - Technical University of Ostrava, Ostrava, Czech Republic
autor
- Faculty of Material Science, Silesian University of Technology, Gliwice, Poland
autor
- Faculty of Material Science, Silesian University of Technology, Gliwice, Poland
autor
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia, Katowice, Poland
autor
- Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw, Poland
autor
- University of Chemistry and Technology, Prague, Czechia
autor
- Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw, Poland
Bibliografia
- 1. Sayari F, Roumina R, Mahmudi R, Hoseini-athar MM, Hedström P. Comparison of the effect of ECAP and SSE on microstructure, texture, and mechanical properties of magnesium. J Alloys Compd. 2022;908:164407. https://doi.org/10.1016/j.jallcom.2022.164407.
- 2. Gautam PC, Biswas S. On the possibility to reduce ECAP deformation temperature in magnesium: deformation behaviour, dynamic recrystallization and mechanical properties. Mater Sci Eng A. 2021;812:141103. https://doi.org/10.1016/j.msea.2021.141103.
- 3. Suwas S, Gottstein G, Kumar R. Evolution of crystallographic texture during equal channel angular extrusion (ECAE) and its effects on secondary processing of magnesium. Mater Sci Eng A. 2007;471:1-14. https://doi.org/10.1016/j.msea.2007.05.030.
- 4. Janeček M, Yi S, Král R, Vrátná J, Kainer KU. Texture and microstructure evolution in ultrafine-grained AZ31 processed by EXECAP. J Mater Sci. 2010;45:4665-71. https://doi.org/10.1007/s10853-010-4675-1.
- 5. Minárik P, Král R, Pešička J, Chmelík F. Evolution of mechanical properties of LAE442 magnesium alloy processed by extrusion and ECAP. J Mater Res Technol. 2015;4:75-8. https://doi.org/10.1016/j.jmrt.2014.10.012.
- 6. Klu EE, Song D, Li C, Wang G, Gao B, Ma A. Achieving ultrafine grains and high strength of Mg-9Li alloy via room-temperature ECAP and post rolling. Mater Sci Eng A. 2022;833:142371. https://doi.org/10.1016/j.msea.2021.142371.
- 7. Matsunoshita H, Edalati K, Furui M, Horita Z. Ultrafine-grained magnesium-lithium alloy processed by high-pressure torsion: Low-temperature superplasticity and potential for hydroforming. Mater Sci Eng A. 2015;640:443-8. https://doi.org/10.1016/j.msea.2015.05.103.
- 8. Langdon TG. The principles of grain refinement in equal-channel angular pressing. Mater Sci Eng A. 2007;462:3-11. https://doi.org/10.1016/j.msea.2006.02.473.
- 9. Faraji G, Mosavi M, Seop H. Tubular channel angular pressing (TCAP ) as a novel severe plastic deformation method for cylindrical tubes. Mater Lett. 2011;65:3009-12. https://doi.org/10.1016/j.matlet.2011.06.039.
- 10. Kunčická L, Kocich R, Král P, Pohludka M, Marek M. Effect of strain path on severely deformed aluminium. Mater Lett. 2016;180:280-3. https://doi.org/10.1016/j.matlet.2016.05.163.
- 11. Machácková A. Decade of twist channel angular pressing : a review. Materials (Basel). 2020;13:1-19. https://doi.org/10.3390/ma13071725.
- 12. Iqbal UM. Muralidharan S. Optimization of die design parameters and experimental validation on twist channel angular pressing process of AA6061-T6 aluminium alloy Optimization of die design parameters and experimental validation on twist channel angular pressing process of AA6061-, (2019).
- 13. Kocich R, Greger M, Kursa M, Szurman I, Macháčková A. Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD. Mater Sci Eng A. 2010;527:6386-92. https://doi.org/10.1016/j.msea.2010.06.057.
- 14. Kunčická L, Kocich R, Ryukhtin V, Cullen JCT, Lavery NP. Study of structure of naturally aged aluminium after twist channel angular pressing. Mater Charact. 2019;152:94-100. https://doi.org/10.1016/j.matchar.2019.03.045.
- 15. Faraji G, Yavari P, Aghdamifar S, Mashhadi MM. Mechanical and microstructural properties of ultra- fine grained AZ91 magnesium alloy tubes processed via multi pass tubular channel angular pressing ( TCAP ). J Mater Sci Technol. 2013. https://doi.org/10.1016/j.jmst.2013.08.010.
- 16. Hilser O, PastrnakK M, Rusz S, Krupova H, Snopinski P. Finite element analysis of twist channel angular pressing. MM Sci J. 2023;2023:6314-8. https://doi.org/10.17973/mmsj.2023_03_2022101.
- 17. Behrens BA, Bouguecha A, Hadifi T, Mielke J. Advanced friction modeling for bulk metal forming processes. Prod Eng. 2011;5:621-7. https://doi.org/10.1007/s11740-011-0344-8.
- 18. Atlas of Stress-Strain Curves, 2nd edition, ASTM International, 2002.
- 19. Dobkowska A, Adamczyk B, Cieślak M, Koralnik W, Chromiński J, Kubasek J, Ciftci D, Kuc JM. Corrosion behavior of fine-grained Mg-7.5Li-3Al-1Zn fabricated by extrusion with a forward-backward rotating die (KoBo). J Magnes Alloy. 2021. https://doi.org/10.1016/j.jma.2021.08.020.
- 20. Esmaily M, Svensson JE, Fajardo S, Birbilis N, Frankel GS, Virtanen S, Arrabal R, Thomas S, Johansson LG. Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci. 2017;89:92-193. https://doi.org/10.1016/j.pmatsci.2017.04.011.
- 21. Orlov D, Ralston KD, Birbilis N, Estrin Y. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater. 2011;59:6176-86.
- 22. Sudholz AD, Gusieva K, Chen XB, Muddle BC, Gibson MA, Birbilis N. Electrochemical behaviour and corrosion of Mg-Y alloys. Corros Sci. 2011;53:2277-82. https://doi.org/10.1016/j.corsci.2011.03.010.
- 23. Xiang Q, Jiang B, Zhang Y, Chen X, Song J, Xu J, Fang L, Pan F. Effect of rolling-induced microstructure on corrosion behaviour of an as-extruded Mg-5Li-1Al alloy sheet. Corros Sci. 2017;119:14-22. https://doi.org/10.1016/j.corsci.2017.02.009.
- 24. Badawy WA, Hilal NH, El-Rabiee M, Nady H. Electrochemical behavior of Mg and some Mg alloys in aqueous solutions of different pH. Electrochim Acta. 2010;55:1880-7. https://doi.org/10.1016/j.electacta.2009.10.083.
- 25. Masoudpanah SM, Mahmudi R. The microstructure, tensile, and shear deformation behavior of an AZ31 magnesium alloy after extrusion and equal channel angular pressing. Mater Des. 2010;31:3512-7. https://doi.org/10.1016/j.matdes.2010.02.018.
- 26. Liu T, Wang YD, Wu SD, Peng RL, Huang CX, Jiang CB, Li SX. Textures and mechanical behavior of Mg-3.3%Li alloy after ECAP. Scr Mater. 2004;51:1057-61. https://doi.org/10.1016/j.scriptamat.2004.08.007.
- 27. Karami M, Mahmudi R. Work hardening behavior of the extruded and equal-channel angularly pressed Mg-Li-Zn alloys under tensile and shear deformation modes. Mater Sci Eng A. 2014;607:512-20. https://doi.org/10.1016/j.msea.2014.04.040.
- 28. Liu X, Bian L, Tian F, Han S, Wang T, Liang W. Microstructural evolution and mechanical response of duplex Mg-Li alloy containing particles during ECAP processing. Mater Charact. 2022;188:111910. https://doi.org/10.1016/j.matchar.2022.111910.
- 29. Chen D, Kong J, Gui Z, Li W, Long Y, Kang Z. High-temperature superplastic behavior and ECAP deformation mechanism of two-phase Mg-Li alloy. Mater Lett. 2021;301:130358. https://doi.org/10.1016/j.matlet.2021.130358.
- 30. Dobkowska A, Adamczyk Cieślak B, Kuc D, Hadasik E, Płociński T, Ura-Bińczyk E, Mizera J. Influence of bimodal grain size distribution on the corrosion resistance of Mg-4Li-3Al-1Zn (LAZ431). J Mater Res Technol. 2021;13:346-58. https://doi.org/10.1016/j.jmrt.2021.04.078.
- 31. Dobkowska A, Zielińska A, Donik Č, Łojkowski M, Adamczyk-Cieślak B. Microstructure and properties of an AZ61 alloy after extrusion with a forward-backward oscillating die without preheating of the initial billet. J Alloys Compd. 2023. https://doi.org/10.1016/j.jallcom.2023.169843.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d39b042-7db7-425b-9546-dd152229a011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.