PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chitin Fibre Formation by the Solution Blow Spinning Method, Using 1-butyl-3-methylimidazolium Acetate Ionic Liquid as a Solvent

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Formowanie włókien chityny metodą rozdmuchu przy zastosowaniu cieczy jonowej jako rozpuszczalnika
Języki publikacji
EN
Abstrakty
EN
Chitin is the second most abundant polysaccharide on the Earth after cellulose, therefore there is a tangible need for finding new environmentally-friendly solvents for the manufacture of useful forms of that polymer. Ionic liquids have been recently proposed as a possible type of solvent for chitin and cellulose. The possibility of the dissolution of chitin of various origin in six selected ionic liquids was investigated. Chitin samples were characterised by the main characteristic properties: degree of N-acetylation (by FTIR spectroscopy), degree of crystallinity (by WAXS), average molecular weight (by the viscometric method) and physical form. The studies performed allowed to find the optimum chitin-ionic liquid system based on 1-btyl-3-methylimidazolium acetate for the manufacture of chitin fibres by the solution blow spinning method. Final products were characterized by the same set of parameters as the initial materials.
PL
Chityna jest drugim po celulozie polisacharydem na Ziemi, dlatego istnieje namacalna potrzeba znalezienia nowych i przyjaznych dla środowiska rozpuszczalników do produkcji użytecznych form tego polimeru. Niedawno ciecze jonowe zostały zaproponowane jako możliwe do zastosowania „zielone” rozpuszczalniki chityny i celulozy. W artykule oceniono możliwość rozpuszczania różnego pochodzenia chityny w sześciu wybranych cieczach jonowych. Próbki chityny zostały scharakteryzowane poprzez następujące właściwości: stopień N-acetylacji (spektroskopia FT IR), stopień krystaliczności (WAXS), średnia masa cząsteczkowa (metoda wiskometryczna). Przeprowadzone badania pozwoliły na znalezienie optymalnego systemu cieczy jonowej do wytworzenia włókien chitynowych metodą rozdmuchu. Produkty końcowe zostały scharakteryzowane poprzez ten sam zestaw parametrów, co początkowe polimery.
Rocznik
Strony
42--48
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Material Science of Textiles and Polymer Composites, S. Zeromskiego 116, 90-924 Lodz, Poland
  • Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, 61-612 Poznan, Poland
  • Institute of Security Technologies “MORATEX”, M. Sklodowskiej-Curie 3, 90-505 Lodz, Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Material Science of Textiles and Polymer Composites, S. Zeromskiego 116, 90-924 Lodz, Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Material Science of Textiles and Polymer Composites, S. Zeromskiego 116, 90-924 Lodz, Poland
Bibliografia
  • 1. Li Q, Dunn ET, Grandmaison EW, et al. Applications and Properties of Chitosan. J Bioact Compat Polym 1992; 7: 370-397.
  • 2. Struszczyk MH. Chitin and Chitosan: Part I. Properties and production. Polimery 2002; 47: 316-325.
  • 3. Minke R, Blackwell J. The Structure of a-Chitin. J Mol Biol 1978; 120: 167-181.
  • 4. Wawro D, Stęplewski W, Komisarczyk A, Krucińska I. Formation and Properties of Highly Porous Dibutyrylchitin Fibres Containing Nanoparticles. FIBRES & TEXTILES in Eastern Europe 2013; 21, 4(100): 31-37.
  • 5. Chilarski A, Szosland L, Krucińska I, et al. Non-Wovens made from Dibutyrylchitin as Novel Dressing Materials Accelerating Wound Healing. In: H. Struszczyk, A. Domard, M. G. Peter HP (ed) Proceedings of 6th International Conference of the European Chitin Society, EUCHIS’04. 2004.
  • 6. Błasińska A, Krucińska I, Chrzanowski M. Dibutyrylchitin Nonwoven Biomaterials Manufactured Using Electrospinning Method. FIBRES & TEXTILES in Eastern Europe 2004, 12, 4(48): 51-55.
  • 7. Błasińska A, Mikołajczyk T. Wet Spinning of Dibutyrylchitin Fibres from Ethanol Solution. FIBRES & TEXTILES in Eastern Europe 2005, 13, 6(54): 36-40.
  • 8. Błasińska A, Trębska I, Krucińska I. Preliminary Assessment of Sorption Capabilieties of Nonwoven Dressing Materials. Prog Chem Appl Chit Deriv 2003; IX: 169.
  • 9. Chilarski A, Krucinska I, Kiekens P, et al. Novel Dressing Materials Accelerating Wound Healing Made from Dibutyrylchitin. FIBRES & TEXTILES in Eastern Europe 2007 15, 4(63): 77-81.
  • 10. Struszczyk MH. Chitin And Chitosan: Part III. Some Aspects of Biodegradation and Bioactivity. Polimery 2002; 47: 619-629.
  • 11. Shahidi F, Abuzaytoun R. Chitin, Chitosan, and Co-Products: Chemistry, Production, Applications, and Health Effects. Adv Food Nutr Res 2005; 49: 93-135.
  • 12. Swatloski RP, Spear SK, Holbrey JD, et al. Dissolution of Cellulose with Ionic Liquids. J Am Chem Soc 2002; 124: 4974-4975.
  • 13. Wu Y, Sasaki T, Irie S, et al. A Novel Biomass-Ionic Liquid Platform for the Utilization of Native Chitin. Polymer (Guildf) 2008; 49: 2321-2327.
  • 14. Qin Y, Lu X, Sun N, et al. Dissolution or Extraction of Crustacean Shells Using Ionic Liquids to Obtain High Molecular Weight Purified Chitin and Direct Production of Chitin Films and Fibers. Green Chem 2010; 12: 968-971.
  • 15. Wasserscheid P, Welton T. Ionic Liquids In Synthesis. John Wiley & Sons, 2008.
  • 16. Aparicio S, Atilhan M, Karadas F. Thermophysical Properties of Pure Ionic Liquids: Review of Present Situation. Ind Eng Chem Res 2010; 49: 9580-9595.
  • 17. Hallett JP, Welton T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chem Rev 2011; 111: 3508-3576.
  • 18. Freemantle M. Designer Solvents. Chem Eng News Arch 1998; 76: 32-37.
  • 19. Mallakpour S, Dinari M. Ionic Liquids as Green Solvents: Progress and Prospects BT – Green Solvents II: Properties and Applications of Ionic Liquids. In: Mohammad A, Inamuddin D (eds). Dordrecht: Springer Netherlands, pp. 1-32.
  • 20. Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem Rev 1999; 99: 2071-2083.
  • 21. Wasserscheid P, Keim W. Ionic Liquids – New ‘Solutions’ for Transition Metal Catalysis. Angew Chemie Int Ed 2000; 39: 3772-3789.
  • 22. Wishart JF. Energy Applications of Ionic Liquids. Energy Environ Sci 2009; 2: 956-961.
  • 23. Minami I. Ionic Liquids In Tribology. Molecules (Basel, Switzerland) 2009; 14: 2286-2305.
  • 24. Anderson JL, Armstrong DW, Wei G. Ionic Liquids in Analytical Chemistry. Anal Chem 2006; 78: 2892.
  • 25. Stolarska O, Pawlowska-Zygarowicz A, Soto A, et al. Mixtures of Ionic Liquids as More Efficient Media for Cellulose Dissolution. Carbohydr Polym 2017; 178: 277-285.
  • 26. Chowdhury ZZ, Bee S, Hamid A, et al. Catalytic Role of Ionic Liquids for Dissolution and Degradation of Biomacromolecules. BioresourcesCom 2014; 9: 1787-1823.
  • 27. Clough MT, Geyer K, Hunt PA, et al. Ionic Liquids: not always Innocent Solvents for Cellulose. Green Chem 2015; 17: 231-243.
  • 28. Wang W-T, Zhu J, Wang X-L, et al. Dissolution Behavior of Chitin in Ionic Liquids. J Macromol Sci Part B 2010; 49: 528-541.
  • 29. Kadokawa J, Takegawa A, Mine S, et al. Preparation of Chitin Nanowhiskers Using an Ionic Liquid and their Composite Materials with Poly(Vinyl Alcohol). Carbohydr Polym 2011; 84: 1408-1412.
  • 30. Kadokawa J-I. Ionic Liquid as Useful Media for Dissolution, Derivatization, and Nanomaterial Processing of Chitin. Green Sustain Chem 2013; 03: 19-25.
  • 31. Setoguchi T, Kato T, Yamamoto K, et al. Facile Production of Chitin from Crab Shells Using Ionic Liquid and Citric Acid. Int J Biol Macromol 2012; 50: 861-864.
  • 32. Mundsinger K, Müller A, Beyer R, et al. Multifilament Cellulose/Chitin Blend Yarn Spun from Ionic Liquids. Carbohydr Polym 2015; 131: 34-40.
  • 33. Chakravarty J, Rabbi MF, Bach N, et al. Fabrication of Porous Chitin Membrane Using Ionic Liquid and Subsequent Characterization and Modelling Studies. Carbohydr Polym 2018; 198: 443-451.
  • 34. King C, Shamshina JL, Gurau G, et al. A Platform for More Sustainable Chitin Films from an Ionic Liquid Process. Green Chem 2017; 19: 117-126.
  • 35. Jaworska MM, Górak A, Zdunek J. Modification of Chitin Particles with Ionic Liquids Containing Ethyl Substituent in a Cation. Adv Mater Sci Eng; 2017. Epub ahead of print 2017. DOI: 10.1155/2017/3961318.
  • 36. Barber PS, Griggs CS, Bonner JR, et al. Electrospinning of Chitin Nanofibers Directly from an Ionic Liquid Extract of Shrimp Shells. Green Chem 2013; 15: 601-607.
  • 37. Stawski D, Rabiej S, Herczyńska L, et al. Thermogravimetric Analysis of Chitins of Different Origin. J Therm Anal Calorim 2008; 93: 489-494.
  • 38. Muzzarelli RAA. Biomedical Exploitation of Chitin and Chitosan via Mechano-Chemical Disassembly, Electrospinning, Dissolution in Imidazolium Ionic Liquids, and Supercritical Drying. Mar Drugs 2011; 9: 1510-1533.
  • 39. Jaworska M, Górak A. Modification of Chitin Particles with Chloride Ionic Liquids. Mater Lett 2016; 164: 341-343.
  • 40. Medeiros ES, Glenn GM, Klamczynski AP, et al. Solution Blow Spinning: A New Method to Produce Micro- and Nanofibers from Polymer Solutions. J Appl Polym Sci 2009; 113: 2322-2330.
  • 41. Krucinska I, Komisarczyk A, Paluch D, et al. The Impact of the Dibutyrylchitin Molar Mass on the Bioactive Properties of Dressings Used to Treat Soft Tissue Wounds. J Biomed Mater Res Part B Appl Biomater 2012; 100B: 11-22.
  • 42. Roberts GAF. Chitin Chemistry. London: Macmillan Education UK, 1992.
  • 43. Ratajska M, Struszczyk MH, Boryniec S, et al. The Degree of Acetylation of Chitosan: Optimization of the IR Method.Polimery/Polymers 1997; 42: 572-575.
  • 44. Kasaai MR. A Review of Several Reported Procedures to Determine the Degree of N-Acetylation for Chitin and Chitosan Using Infrared Spectroscopy. Carbohydr Polym 2008; 71: 497-508.
  • 45. Rabiej M. A Hybrid Immune-Evolutionary Strategy Algorithm for the Analysis of the Wide-Angle X-Ray Diffraction Curves of Semicrystalline Polymers. J Appl Crystallogr 2014; 47: 1502-1511.
  • 46. Hindeleh AM, Johnson DJ. Crystallinity and Crystallite Size Measurement in Polyamide and Polyester Fibers. Polymer (Guildf) 1978; 27-32.
  • 47. Uto T, Idenoue S, Yamamoto K, et al. Understanding Dissolution Process of Chitin Crystal in Ionic Liquids: Theoretical study. Phys Chem Chem Phys. Epub ahead of print 2018. DOI: 10.1039/c8cp02749h.
  • 48. Ma Q, Gao X, Bi X, et al. Dissolution and Deacetylation of Chitin in Ionic Liquid Tetrabutylammonium Hydroxide and its Cascade Reaction in Enzyme Treatment for Chitin Recycling. Carbohydr Polym. Epub ahead of print 2020. DOI: 10.1016/j.carbpol.2019.115605.
  • 49. Paulino AT, Simionato JI, Garcia JC, et al. Characterization of Chitosan and Chitin Produced from Silkworm Crysalides. Carbohydr Polym 2006; 64: 98-103.
  • 50. Jaworska M, Tomasz K, Andrzej G. Review of the Application of Ionic Liquids as Solvents for Chitin. Journal of Polymer Engineering 2012; 32: 67.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d34c749-c2d2-453f-b0eb-967e4bca5eb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.