Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a number of definitions of variable order difference and discusses duality among some of them. The duality is used to improve the performance of the least squares estimation when applied to variable order difference fractional systems. It turns out, that by appropriate exploitation of duality one can reduce the estimator variance when system identification is carried out.
Rocznik
Tom
Strony
809--815
Opis fizyczny
Bibliogr. 34, rys., wykr., tab.
Twórcy
autor
- Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., 00-625 Warszawa, Poland
autor
- Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., 00-625 Warszawa, Poland
Bibliografia
- [1] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
- [2] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
- [3] S. Samko, A. Kilbas, and O. Maritchev, Fractional Integrals and Derivative. Theory and Applications, Gordon & Breach Sci. Publishers, London, 1987.
- [4] H. Sheng, Y. Chen, and T. Qiu, Signal Processing Fractional Processes and Fractional-Order Signal Processing, Springer, London, 2012.
- [5] T. Kaczorek, Selected Problems of Fractional Systems Theory, Heidelberg: Springer, Berlin, 2011.
- [6] T. Kaczorek and L. Sajewski, Realization Problem for Positive and Fractional Systems, Printing House of Bialystok University of Technology, Warsaw, 2013.
- [7] H. El Brouji, J.-M. Vinassa, O. Briat, N. Bertrand, and E.Woirgard, “Ultracapacitors self discharge modelling using a physical description of porous electrode impedance”, Vehicle Power and Propulsion Conf., VPPC ’08. IEEE 1, 1-6 (2008).
- [8] A. Dzielinski, G. Sarwas, and D. Sierociuk, “Time domain validation of ultracapacitor fractional order model”, Decision and Control (CDC), 2010 49th IEEE Conf. 1, 3730-3735 (2010).
- [9] A. Dzielinski, G. Sarwas, and D. Sierociuk, “Comparison and validation of integer and fractional order ultracapacitor models”, Advances in Difference Equations 11, (2011).
- [10] R. Martin, J. Quintana, A. Ramos, and I. de la Nuez, “Modeling electrochemical double layer capacitor, from classical to fractional impedance”, Electrotechnical Conf., MELECON 2008. The 14th IEEE Mediterranean 1, 61-66 (2008).
- [11] H. Sheng, H. Sun, C. Coopmans, Y. Chen, and G. W. Bohannan, “Physical experimental study of variable-order fractional integrator and differentiator”, Proc. 4th IFAC Workshop Fractional Differentiation and its Applications FDA’10 1, CD-ROM (2010).
- [12] L. Ramirez and C. Coimbra, “On the variable order dynamics of the nonlinear wake caused by a sedimenting particle”, Physica D-Nonlinear Phenomena 240 (13), 1111-1118 (2011).
- [13] C.-C. Tseng, “Design and application of variable fractional order differentiator”, Proceedings 2004 IEEE Asia-Pacific Conf. on Circuits and Systems 1, 405-408 (2004).
- [14] C.-C. Tseng and S.-L. Lee, “Design of variable fractional order differentiator using infinite product expansion”, Proc. 20th European Conf. on Circuit Theory and Design (ECCTD) 1, 17-20 (2011).
- [15] H. Sheng, H. Sun, Y. Chen, and T. Qiu, “Synthesis of multifractional gaussian noises based on variable-order fractional operators”, Signal Processing 91, 7, 1645-1650 (2011).
- [16] D. Sierociuk, I. Podlubny, and I. Petras, “Experimental evidence of variable-order behavior of ladders and nested ladders”, Control Systems Technology, IEEE Trans. 21 (2), 459-466 (2013).
- [17] P. Ostalczyk and T. Rybicki, “Variable-fractional-order deadbeat control of an electromagnetic servo”, J. Vibration and Control 14 (9-10), 1457-1471 (2008).
- [18] P. Ostalczyk, “Stability analysis of a discrete-time system with a variable-, fractional-order controller”, Bull. Pol. Ac.: Tech. 58, 4, 613-619 (2010).
- [19] P. Ostalczyk, “Variable-, fractional-order discrete PID controllers”, Proc. IEEE/IFAC 17th International Conf. on Methods and Models in Automation and Robotics (MMAR) 1, 534-539 (2012).
- [20] P. Ostalczyk and P. Duch, “Closed-loop system synthesis with the variable-, fractional- order PID controller”, Proc. IEEE/IFAC 17th International Conf. on Methods and Models in Automation and Robotics (MMAR) 1, 589-594 (2012).
- [21] C. Lorenzo and T. Hartley, “Variable order and distributed order fractional operators”, Nonlinear Dynamics 29 (1-4), 57-98 (2002).
- [22] D. Valerio and J.S. da Costa, “Variable-order fractional derivatives and their numerical approximations”, Signal Processing 91 (3), SI, 470-483 (2011).
- [23] D. Sierociuk, W. Malesza, and M. Macias, “Equivalent switching strategy and analog validation of the fractional variable order derivative definition”, Proc. Eur. Control Conf. 1, 3464-3469 (2013).
- [24] D. Sierociuk, W. Malesza, and M. Macias, “On a new definition of fractional variable-order derivative”, Proc. 14th Int. Carpathian Control Conf. (ICCC) 1, 340-345 (2013).
- [25] D. Sierociuk, I. Tejado, and B.M. Vinagre, “Improved fractional Kalman filter and its application to estimation over lossy networks”, Signal Processing 91 (3), SI, 542-552 (2011).
- [26] A. Dzielinski and D. Sierociuk, “Ultracapacitor modelling and control using discrete fractional order state-space model”, Acta Montanistica Slovaca 13 (1), 136-145 (2008).
- [27] A. Dzielinski, D. Sierociuk, and G. Sarwas, “Some applications of fractional order calculus”, Bull. Pol. Ac.: Tech. 58 (4), 583-592 (2010).
- [28] A. Kiani-B, K. Fallahi, N. Pariz, and H. Leung, “A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional kalman filter”, Communications in Nonlinear Science and Numerical Simulation 14 (3), 63-879 (2009).
- [29] M. Benmalek and A. Charef, “Digital fractional order operators for r-wave detection in electrocardiogram signal”, IET Signal Processing 3 (5), 381-391 (2009).
- [30] M. Romanovas, L. Klingbeil, M. Traechtler, and Y. Manoli, “Application of fractional sensor fusion algorithms for inertial mems sensing”, Mathematical Modelling and Analysis 14 (2), 199-209 (2009).
- [31] A. Dzielinski and D. Sierociuk, “Observer of discrete fractional order state-space systems”, Proc. 2nd IFAC Workshop on Fractional Differentiation and Its Applications 1, 511-516 (2006).
- [32] A. Dzielinski and D. Sierociuk, “Reachability, controllability and observability of the fractional order discrete statespace system”, Proc. IEEE/IFAC International Conf. on Methods and Models in Automation and Robotics, MMAR 1, 129-134 (2007).
- [33] D. Sierociuk, “System properties of fractional variable order discrete state-space system”, Proc. 13th International Carpathian Control Conf. (ICCC), 2012 1, 643-648 (2012).
- [34] D. Sierociuk, M. Macias, and W. Malesza, “Analog modeling of fractional switched order derivative using different switching schemes”, Emerging and Selected Topics in Circuits and Systems, IEEE J. 3 (3), 394-403 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d2f4584-57a0-4275-8b0e-bf039fe6a424