PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of precipitates formed on iron reactors following the removal of copper from water

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presence of heavy metals, e.g. Cu in groundwater as a result of acid mine drainage (AMD) poses a threat to the environment. In order to remove cationic copper from solutions simulating the AMD, iron reactors were applied as zero-valent iron. The precipitates formed on the surface of the reactors and their specific surface area were determined. Affinity of copper in ionic form with reactors was investigated. The results show that for iron reactor immersed in solution of initial pH 3, copper oxides as well as iron oxides and carbonates (to lower extent) were formed. More reaction products were generated in case of higher pH (initial pH = 6). These were mainly: copper and iron oxides, Cu0, and probably iron sulfates and carbonates. These precipitates caused an increase in specific surface of the reactors. In both cases (mainly for the reactor immersed in a solution of lower pH) the surface of the reactors was not covered entirely with a coating. The sorption study indicated that copper ions may be retained on the surface of reactors only at higher pH, because the pH at point of zero charge of iron reactors was ca. 6.2.
Rocznik
Strony
123--135
Opis fizyczny
Bibliogr. 17 poz., tab., rys.
Twórcy
autor
  • Faculty of Mining and Geology, Silesian University of Technology, ul. Akademicka 2, 44-100 Gliwice, Poland
Bibliografia
  • [1] MOORE L.R., DURAND J.R., Copper removal from mine effluents. From lab to field evaluations, Mine Water Environ., 2013, 32, 239.
  • [2] ZHANG M., WANG H., Simultaneous removal of copper, zinc, and sulfate from coal mine waste in a la-boratory SRB bioreactor using lactate or ethanol as carbon sources, Mine Water Environ., 2013, 32, 314.
  • [3] AYOB A., ISMAIL N., TENG T.T., ABDULLAH A.Z., Immobilization of Cu2+ using stabilized nano zero valent iron particles in contaminated aqueous, Environ. Prot. Eng., 2012, 38 (3), 119.
  • [4] KARABELLI D., UZUM C., SHAHWAN T., EROGLU A.E., SCOTT T.B., HALLAM K.R., LIEBERWIRTH I., Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron. A study of the capacity and mechanisms of uptake, Ind. Eng. Chem. Res., 2008, 47, 4758.
  • [5] LI X.Q., ZHANG W.X., Sequestration of metal cations with zerovalent iron nanoparticles. A study with high resolution X-ray photoelectron spectroscopy (HRXPS), J. Phys. Chem., 2007, 111 (19), 6939.
  • [6] RANGSIVEK R., JEKEL M.R., Removal of dissolved metals by zero-valent iron (ZVI). Kinetics, equilibria, processes and implications for stormwater runoff treatment, Water Res., 2005, 39, 4153.
  • [7] WILKIN R.T., MCNEIL M.S., Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage, Chemosphere, 2003, 53, 715.
  • [8] SUPONIK T., Groundwater treatment with the use of zero-valent iron in the permeable reactive barrier technology, Physicochem. Probl. Mineral Proc., 2013, 49 (1), 13.
  • [9] SUPONIK T., Zero-valent iron for inorganic contaminants removal from low pH water, Environ. Prot. Eng., 2015, 41 (1), 15.
  • [10] BABIĆ B.M., MILONJIĆ S.K., POLOVINA M.J., KALUDIEROVIĆ B.V., Point of zero charge and intrinsic equilibrium constants of activated carbon cloth, Carbon, 1999, 37, 477.
  • [11] UZUM C., SHAHWAN T., EROGLU A.E., HALLAM K.R., SCOTT T.B., LIEBERWIRTH I., Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci., 2009, 43, 172.
  • [12] FURUKAWA Y., KIM J.W., WATKINS J., WILKIN R.T., Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron, Environ. Sci. Technol., 2002, 36 (24), 5469.
  • [13] ROH Y., LEE S.Y., ELLESS M.P., Characterization of corrosion products in the permeable reactive barriers, Environ. Geol., 2000, 40, 184.
  • [14] KOSMULSKI M., The pH-dependent surface charging and points of zero charge. V. Update, J. Colloid. Interface Sci., 2011, 353 (1), 1.
  • [15] GONZALEZ G., LASKOWSKI J., The point of zero charge of oxidized copper minerals: tenorite, malachite and chrysocolla, J. Electroanal. Chem., 1974, 53 (3), 452.
  • [16] SONDI I., BISCAN J., VDOVIC N., SKAPIN S.D., The electrokinetic properties of carbonates in aqueous media revisited, Colloids Surf. A, 2009, 342 (1), 84.
  • [17] FOSS M., GULBRANDSEN E., SJOBLOM J., Adsorption of corrosion inhibitors onto iron carbonate (FeCO3) studied by zeta potential measurements, J. Dispersion Sci. Technol., 2010, 31 (2), 200.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d2e4d9c-8f64-447b-96ce-791d3b7b5629
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.