PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the strength reduction factor in predicting the flexural strength

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the design of flexural strength, the strength reduction factor φ decreases from tension- -controlled sections to compression-controlled sections to increase safety with decreasing ductility. This paper presents how to determine the reduction factor for flexural strength of reinforced concrete beams according to ACI code. In the reliability-based design, the reliable prediction of the flexural strength of reinforced concrete members is assured by the use of reduction factors corresponding to different target reliability index β. In this study, for different β and coefficients of variation of the flexural strength parameters, the flexural strength reduction factor has been investigated by using experimental studies available in the literature. In the reliability analysis part of the study, the first-order second moment approach (FOSM) has been used to determine the reduction factor. It has also been assumed that the random variables are statistically independent.
Rocznik
Strony
1043--1053
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
  • Yildiz Technical University, Department of Civil Engineering, Istanbul, Turkey
autor
  • Yildiz Technical University, Department of Civil Engineering, Istanbul, Turkey
Bibliografia
  • 1. AASHTO LRFD: Bridge Design Specifications, 1998, American Association of State Highway and Transportation Officials, Washington, DC
  • 2. ACI, 1995, ACI 318M-95: Building Code Requirements for Structural Concrete and Commentary, ACI, Farmington Hills, MI, USA
  • 3. ACI, 1999, ACI 318M-99: Building Code Requirements for Structural Concrete and Commentary, ACI, Farmington Hills, MI, USA
  • 4. ACI, 2002, ACI 318R-02: Building Code Requirements for Structural Concrete and Commentary, ACI, Farmington Hills, MI, USA
  • 5. ACI, 2005, ACI 318R-05: Building Code Requirements for Structural Concrete and Commentary, ACI, Farmington Hills, MI, USA
  • 6. ACI, 2008, ACI 318R-08: Building Code Requirements for Structural Concrete and Commentary, ACI, Farmington Hills, MI, USA
  • 7. ACI, 2011, ACI 318R-11: Building Code Requirements for Structural Concrete and Commentary, ACI, Farmington Hills, MI, USA
  • 8. ACI, 2014, ACI 318-14: Building Code Requirements for Structural Concrete and Commentary, ACI, Farmington Hills, MI, USA
  • 9. Akiyama M., Matsuzaki H., Dang H.T., Suzuki M., 2012, Reliability-based capacity design for reinforced concrete bridge structures, Structure and Infrastructure Engineering, Maintenance, Management, Life-Cycle Design and Performance, 8, 12, 1096-1107
  • 10. Ang A.H.S., Tang W.H., 1984, Probability Concepts in Engineering Planning and Design. Vol. II, Decision, Risk, and Reliability, Wiley, New York, NY, USA
  • 11. Arslan G., Alacali S., Sagiroglu A., 2016a, Assessing reduction in concrete shear strength contribution, Proceedings of the Institution of Civil Engineers, Structures and Building, 169, 4, 237-244
  • 12. Arslan G., Alacalı S.N., Sagiroglu A., 2016, The investigation of the strength reduction factor in predicting the shear strength, Journal of Theoretical and Applied Mechanics, 53, 2, 371-381
  • 13. Arslan G., Alacali S.N., Sagiroglu A., 2017, Determining the reduction factor in predicting the contribution of concrete to shear strength by using a probabilistic method, International Journal of Civil Engineering (IJCE) Transaction A: Civil Engineering, in reviewer
  • 14. Arslan G., Cihanlı E., 2010, Curvature ductility prediction of reinforced high-strength concrete beam sections, Journal of Civil Engineering and Management (JCEM), 16, 4, 462-470
  • 15. Ashour S.A., 2000, Effect of compressive strength and tensile reinforcement ratio on flexural behavior of high-strength concrete beams, Engineering Structures, 22, 5, 413-423
  • 16. British Standards Institution – Part 1, 1997, Structural Use of Concrete: Code of Practice for Design and Construction, BSI, London, BS 8110
  • 17. Chinese Design Code for Highway Bridges-Beijing, 1991, People’s Communication Press
  • 18. Du J.S., Au F.T.K., 2005, Deterministic and reliability analysis of prestressed concrete bridge girders: comparison of the Chinese, Hong Kong and AASHTO LRFD Codes; Structural Safety, 27, 230-245
  • 19. Enright, M.P., Frangopol, D.M., 1998, Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion, Engineering Structures, 20, 960-971
  • 20. Eurocode ENV 1991-3. Eurocode 1, 1994, Basis of Design and Actions on Structures. Part 3, Traffic Loads on Bridges, Final draft, August
  • 21. European Committee for Standardisation, Design of Concrete Structures, Part 1, 1992, General Rules and Rules for Buildings, European Committee for Standardisation, Brussels, EC 2
  • 22. Hognestad E., 1951, A study of combined bending and axial load in reinforced concrete members, Engineering Experiment Station Bulletin, 399, University of Illinois, Urbana, IL, USA
  • 23. Hosseinnezhad A., Pourzeynali S., Razzaghi J., 2000, Aplication of first-order second moment level 2 reliability analysis of presstressed concrete bridges, 7th International Congress on Civil Engineering
  • 24. JCSS 2000, Probabilistic model code – Part III, Joint Committee on Structural Safety
  • 25. Johnson B., Cox K.C., 1939, High yield-point steel as tension reinforcement in beams, AC1 Journal Proceedings, 36, 1, 65-80
  • 26. Low H.Y., Hao H., 2001, Reliability analysis of reinforced concrete slabs under explosive loading, Structural Safety, 23, 2, 157-178
  • 27. Lu R.H., Luo Y.H., Conte J.P., 1994, Reliability evaluation of reinforced concrete beams, Structural Safety, 14, 4, 277-298
  • 28. Minimum Design Loads for Buildings and Other Structures (SEI/ASCE 7-02), 2002, American Society of Civil Engineers, http://dx.doi.org/10.1061/9780784406243.
  • 29. Mirza S.A., 1996, Reliability-based design of reinforced concrete columns, Structural Safety, 18. 2/3, 179-194
  • 30. Naaman A.E., 2004, Limits of reinforcement in 2002 ACI code, transition, flaws, and solution, ACI Structural Journal, 101, 2, 209-218
  • 31. National Standard of the People’s Republic of China, 1989, Code for Seismic Design of Buildings, GBJ11-89 (in Chinese)
  • 32. Nowak A.S., Collins K.R., 2000, Reliability of Structures, McGraw Hill, Boston, MA, USA
  • 33. Nowak A.S., Park C.H., Casas J.R., 2001, Reliability analysis of prestressed concrete bridge girders: comparison of Eurocode, Spanish Norma IAP and AASHTO LRFD, Structural Safety, 23, 331-344
  • 34. Nowak A.S., Szerszen M.M., 2003, Calibration of design code for buildings (ACI 318), Part 1 – Statistical models for resistance, ACI Structural Journal, 100, 3, 377-382
  • 35. Nowak A.S., Szerszen M.M., Szwed S.A., Podhorecki P.J., 2005, Reliability-Based Calibration for Structural Concrete, Report No. UNCLE 05-03, University of Nebraska
  • 36. Ostlund L., 1991, An estimation of T-values, [In:] Reliability of Concrete Structures. CEB Bulletin d’Information, 202, Lausanne, Switzerland
  • 37. Pam J.H., Kwan A.K.H., Islam M.S., 2001, Flexural strength and ductility of reinforced normaland high-strength concrete beams, Structure and Buildings, 4, 381-389
  • 38. Saatcioglu M., 2014, Chapter 1 – Design for Flexure, Published by Albert Path on Sep. 14
  • 39. Soares R.C., Mohammed A., Venturini W.S., Lemaire M., 2002, Reliability analysis of nonlinear reinforced concrete frames using the response surface method, Reliability Engineering and System Safety, 75, 1-16
  • 40. Spanish Norma IAP-98, 1998, Actions in highway bridges, Road Directorate, Spanish Ministry of Public Works, Madrid
  • 41. Structures Design Manual for Highways and Railways, 1997, Highways Department, Government of the Hong Kong Special Administrative Region, 2nd ed., with Amendment No. 1/2002, Hong Kong
  • 42. Szerszen M.M., Szwed A., Nowak A.S., 2005, Reliability analysis for eccentrically loaded columns, ACI Structural Journal, 102, 5, 676-688
  • 43. Val D., Bljuger F., Yankelevsky D., 1997, Reliability evaluation in nonlinear analysis of reinforced concrete structures, Structural Safety, 19, 2, 203-217
  • 44. Wieghaus K.T., Atadero R.A., 2011, Effect of existing structure and FRP uncertainties on the reliability of FRP-based repair, Journal of Composites for Construction, 15, 4, 635-643
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d253b5c-cc6c-4fa9-8f5d-d450244be10c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.