Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Anomaly pattern detection in a data stream aims to detect a time point where outliers begin to occur abnormally. Recently, a method for anomaly pattern detection has been proposed based on binary classification for outliers and statistical tests in the data stream of binary labels of normal or an outlier. It showed that an anomaly pattern can be detected accurately even when outlier detection performance is relatively low. However, since the anomaly pattern detection method is based on the binary classification for outliers, most well-known outlier detection methods, with the output of real-valued outlier scores, can not be used directly. In this paper, we propose an anomaly pattern detection method in a data stream using the transformation to multiple binary-valued data streams from real-valued outlier scores. By using three outlier detection methods, Isolation Forest(IF), Autoencoder-based outlier detection, and Local outlier factor(LOF), the proposed anomaly pattern detection method is tested using artificial and real data sets. The experimental results show that anomaly pattern detection using Isolation Forest gives the best performance.
Wydawca
Rocznik
Tom
Strony
19--27
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Department of Computer Science and Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu Daejeon, 305-763, Korea
autor
- Department of Computer Science and Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu Daejeon, 305-763, Korea
Bibliografia
- [1] D. Hawkins. Identification of outliers. Springer Netherlands, 1980.
- [2] C.H. Park. Outlier and anomaly pattern detection on data streams. The Journal of Supercomputing, 75:6118–6128, 2019.
- [3] T. Kim and C.H. Park. Anomaly pattern detection for streaming data. Expert Systems with Applications, 149, 2020.
- [4] F. Liu, K. Ting, and Z. Zhou. Isolation forest. In Proceedings of the 8th International Conference on Data Mining, 2008.
- [5] Q. Feng, Y. Zhang, C. Li, Z. Dou, and J. Wang. Anomaly detection of spectrum in wireless communication via deep auto-encoders. The Journal of Supercomputing, 73(7):3161–3178, 2017.
- [6] P. Remy. Anomaly detection in time setries using auto encoders. bolg positng from http://philipperemy.github.io/anomaly-detection.
- [7] D. Pokrajac, A. Lazarevic, and L.J. Latecki. Incremental local outlier detection for data streams. In Proceedings of the CIDM, 2007.
- [8] C. Aggarwal. Outlier analysis. Springer, 2017.
- [9] D. Padilla, R. Brinkworth, and M. McDonnell. Performance of a hierarchical temporal memory network in noisy sequence learning. In Proceedings of IEEE international conference on computational intelligence and cybernetics, 2013.
- [10] S. Ahmad and S. Purdy. Real-time anomaly detection for streaming analytics, 2016. Retrieved from https://arxiv.org/pdf/1607.02480.pdf.
- [11] W. Wong, A. Moore, G. Cooper, and M. Wagner. Rule-based anomaly pattern detection for detecting disease outbreaks. In Proceedings of the 18th International Conference on Artificial Intelligence, 2002.
- [12] K. Das, J. Schneider, and D. Neil. Anomaly pattern detection in categorical datasets. In Proceedings of KDD, 2008.
- [13] F. et al. Pedregosa. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:2825–2830, 2011.
- [14] M.M. Breunig, H-P. Kriegel, R.T. Ng, and J. Sander. Lof: Identifying density-based local outliers. In Proceedings of the 2000 ACM Sigmod International Conference on Management of Data, 2000.
- [15] P. Tan, M. Steinbach, and V. Kumar. Introduction to data mining. Addison Wesley, Boston, 2006.
- [16] S. Hawkins, H. Hongxing, G. Williams, and R. Baxter. Outlier detection using replicator neural networks. In Proceedings of the International Conference on Data Warehousing and Knowledge Discovery, 2002.
- [17] A. Bife, G. Holmes, R. Kirkby, and B. Pfahringer. Moa: Massive online analysis. Journal of Machine Learning Research, 11:1601–1604, 2010.
- [18] Y. Zhao, Z. Nasrullah, and Z. Li. Pyod: A python toolbox for scalable outlier detection. Journal of Machine Learning Research, 20(96):1–7, 2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d181c37-ede8-4fab-ae5c-9906a2f964f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.