PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of an ROV with Modulated Lighting for Diagnosing the Technical Condition of Submerged Port Wharf Structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The technical condition of underwater port structures is critical to the safety and longevity of maritime infrastructure. Traditional inspection techniques, such as diver-assisted surveys, are constrained by safety risks, limited duration, and reduced efficiency in turbid waters. This study explores the application of a remotely operated vehicle (ROV) equipped with modulated lighting systems to enhance visibility and facilitate high-resolution imaging in optically complex underwater environments. The experiment employed a CHASING M2 ROV, modified with red, green, and white lighting configurations, to inspect the quay wall of a port. The impact of lighting color on image quality was evaluated. Results indicate that modulated lighting tailored to the optical properties of turbid coastal waters can improve image contrast and facilitate defect detection. The findings highlight the potential for advanced ROV systems to augment underwater inspection protocols in challenging optical environments.
Twórcy
autor
  • Gdynia Maritime University, Gdynia, Poland
  • Gdynia Maritime University, Gdynia, Poland
  • Gdynia Maritime University, Gdynia, Poland
  • Gdynia Maritime University, Gdynia, Poland
  • Gdynia Maritime University, Gdynia, Poland
  • Gdynia Maritime University, Gdynia, Poland
Bibliografia
  • [1] Jason D. Bakos, Chapter 4 - Memory optimization and video processing, Editor(s): Jason D. Bakos, Embedded Systems, Morgan Kaufmann, 2016, Pages 147-185, ISBN 9780128003428, doi: 10.1016/B978-0-12-800342-8.00004-3
  • [2] https://www.chasing.com/en/chasing-m2.html
  • [3] Freda W. Comparison of the spectral-angular properties of light scattered in the Baltic Sea and oil emulsions. J Europ Opt Soc Rap Public. 2014;9:14017. doi: 10.2971/jeos.2014.14017
  • [4] Freda W, Piskozub J. Revisiting the role of oceanic phase function in remote sensing reflectance. Oceanologia. 2012;54:29–38. doi: 10.5697/oc.54-1.029
  • [5] Haule K, Kubacka M, Toczek H, Pranszke B, Freda W. Correlation between Turbidity and Inherent Optical Properties as an Initial Recognition for Backscattering Coefficient Estimation. Water (Switzerland). 2024;16(4):594.
  • [6] Kowalczuk P, Olszewski J, Darecki M, Kaczmarek S. Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters. Int J Remote Sens. 2005;26(2):345–370. doi: 10.1080/01431160410001720270
  • [7] Kosiek J, Kaizer A, Salomon A, Sacharko A. Analysis of Modern Port Technologies Based on Literature Review. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 2021;15(3):667–674. doi: 10.12716/1001.15.03.22
  • [8] Lednicka B, Kubacka M, Freda W, Ficek D, Sokólski M. Multi-Parameter Algorithms of Remote Sensing Reflectance, Absorption and Backscattering for Coastal Waters of the Southern Baltic Sea Applied to Pomeranian Lakes. Water (Switzerland). 2023;15(15):2843.
  • [9] Lednicka B, Otremba Z, Piskozub J. Light Penetrating the Seawater Column as the Indicator of Oil Suspension Monte Carlo Modelling for the Case of the Southern Baltic Sea. Sensors. 2023;23(3):1175.
  • [10] Lednicka B, Otremba Z, Piskozub J. Modelling the upwelling radiance detected in a seawater column for oil-in-water emulsion tracking. Scientific Reports. 2023;13(1):23098.
  • [11] Lednicka B, Otremba Z, Piskozub J. Vector irradiance modelling in a seawater column for assessing the detection capabilities of an oil-in-water emulsion. Optics Express. 2024;32(17):29424–29435.
  • [12] Lousada SA, Camacho RF, Palacios JS. Underwater Technical Inspections Using ROV Applied to Maritime and Coastal Engineering: The Study Case of Canary Islands. 2021 Jan 7. In: IntechOpen [Internet]. Available from: https://www.intechopen.com/chapters/74726
  • [13] NOAA Ocean Explorer. [Internet]. Available from: https://oceanexplorer.noaa.gov
  • [14] Petzold TJ. Volume scattering functions for selected ocean waters. Scripps Institution of Oceanography Report. 1972; SIO 72-78.
  • [15] Piskozub J, McKee D. Effective scattering phase functions for the multiple scattering regime. Optics Express. 2011;19(5):4786–4794. doi: 10.1364/OE.19.004786
  • [16] Tingting Tao, Cheng Ji, Chengyu Han, Jingde Wang, Wei Sun, Study on the noise contents of different measurements in industrial process and their impact on process monitoring, Computer Aided Chemical Engineering. 2022; 51:1057-1062. doi: 10.1016/B978-0-323-95879-0.50177-6
  • [17] Woźniak SB, Meler J, Stoń-Egiert J. Inherent optical properties of suspended particulate matter in the southern Baltic Sea in relation to the concentration, composition and characteristics of the particle size distribution; new forms of multicomponent parameterizations of optical properties. Journal of Marine Systems. 2022;229:103720.
  • [18] Venkatesh V, Kodoth K, Jacob AA, Upadhyay V, Jhunjhunwala T, Rajagopal P, Ali MN, Balasubramaniam K. Non-Destructive Testing of Quay Walls Using Submersible Remotely Operated Vehicles (ROV) In Waterways Around the North Sea Coast. OCEANS 2022 - Chennai, 2022:1–6, doi: 10.1109/OCEANSChennai45887.2022.9775419
  • [19] Žaglinskis J, Noreikaitė E. The Application of an Underwater Robot for the Creation of a Database for the Technical Inspection of the Underwater Components of Water Transport and Infrastructure. TMT. 2024; 3:182-96. doi: 10.56131/tmt.2024.3.1.259
Uwagi
Pełne imiona podano na stronie internetowej czasopisma w "Authors in other databases."
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d15bc6f-0004-4819-b824-b8a4de1c4f56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.