PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An improved angle calibration method of a high-precision angle comparator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Angle calibrations are widely used in various fields of science and technology, while in the high-precision angle calibrations, a complete closure method which is complex and time-consuming is common. Therefore, in order to improve the measurement efficiency and maintain the accuracy of the complete closure method, an improved calibration method was proposed and verified by the calibration of a high-precision angle comparator with sub-arc-second level. Firstly, a basic principle and algorithm of angle calibration based on complete closure and symmetry connection theory was studied. Then, depending on the pre-established calibration system, the comparator was respectively calibrated by two calibration methods. Finally, by comparing En values of two calibration results, the effectiveness of the improved method was verified. The calibration results show that the angle comparator has a stable angle position error of 0.17′′ and a measurement uncertainty of 0.05′′ (k=2). Through method comparisons, it was shown that the improved calibration method can greatly reduce calibration time and improve the calibration efficiency while ensuring the calibration accuracy, and with the decrease of measurement interval, the improvement of calibration efficiency was more obvious.
Rocznik
Strony
181--190
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Nanjing University of Science & Technology, School of Mechanical Engineering, Nanjing, China
  • Institute of Machinery Manufacturing Technology, CAEP, Mianyang, China
  • National Machine Tool Production Quality Supervision Testing Center (Sichuan), Chengdu, China
autor
  • Nanjing University of Science & Technology, School of Mechanical Engineering, Nanjing, China
autor
  • Institute of Machinery Manufacturing Technology, CAEP, Mianyang, China
autor
  • Institute of Machinery Manufacturing Technology, CAEP, Mianyang, China
  • National Machine Tool Production Quality Supervision Testing Center (Sichuan), Chengdu, China
autor
  • Institute of Machinery Manufacturing Technology, CAEP, Mianyang, China
  • National Machine Tool Production Quality Supervision Testing Center (Sichuan), Chengdu, China
autor
  • Institute of Machinery Manufacturing Technology, CAEP, Mianyang, China
  • National Machine Tool Production Quality Supervision Testing Center (Sichuan), Chengdu, China
Bibliografia
  • [1] Chen, L., Zhou, Y., Zhang, D., Shu, X., & Liu, C. (2019). A dynamic angle metrology system based on fibre-optic gyroscope and rotary table. Metrology and Measurement Systems, 26(3), 497-504. https://doi.org/10.24425/mms.2019.129574
  • [2] Kim, J. A., Kim, J. W., Kang, C. S., Jin, J., & Eom, T. B. (2013). Calibration of angle artifacts and instruments using a high precision angle generator. International Journal of Precision Engineering and Manufacturing, 14(3), 367-371. https://doi.org/10.1007/s12541-013-0051-9
  • [3] Kisała, P., Skorupski, K., Cięszczyk, S., Panas, P., & Klimek, J. (2018). Rotation and twist measurement using tilted fibre Bragg gratings. Metrology and Measurement Systems, 25(3), 429-440. https://doi.org/10.24425/123893
  • [4] Xia, Y., Wu, Z., Huang, M., Li, M., & Tang, Q. (2020). Evaluation of measurement uncertainty for a high-precision angle comparator with a vacuum preloaded structure. Measurement Science and Technology, 31(2), 025007. https://doi.org/10.1088/1361-6501/ab4d6b
  • [5] Kinnane, M. N., Hudson, L. T., Henins, A., & Mendenhall, M. H. (2015). A simple method for high-precision calibration of long-range errors in an angle encoder using an electronic nulling autocollimator. Metrologia, 52(2), 244-250. https://doi.org/10.1088/0026-1394/52/2/244
  • [6] Yandayan, T., Akgoz, S. A., & Asar, M. (2013). Calibration of high-resolution electronic autocollimators with demanded low uncertainties using single reading head angle encoders. Measurement Science and Technology, 25(1), 015010. https://doi.org/10.1088/0957-0233/25/1/015010
  • [7] Guertin, C. F., & Geckeler, R. D. (2017). A new ultra-high-accuracy angle generator: current status and future direction. Advances in Metrology for X-Ray and EUV Optics VII, USA,10385, 103850A. International Society for Optics and Photonics. https://doi.org/10.1117/12.2274143
  • [8] Yandayan, T., Geckeler, R. D., Just, A., Krause, M., Akgoz, S. A., Aksulu, M., Grubert, B., & Watanabe, T. (2018). Investigations of interpolation errors of angle encoders for high precision angle metrology. Measurement Science and Technology, 29(6), 064007. https://doi.org/10.1088/1361-6501/aabef6
  • [9] Watanabe, T., Fujimoto, H., Nakayama, K., Masuda, T., & Kajitani, M. (2001). Automatic high-precision calibration system for angle encoder. Recent Developments in Traceable Dimensional Measurements, 4401, 267-274. International Society for Optics and Photonics. https://doi.org/10.2493/jjspe.67.1091(in China)
  • [10] Eves, B. J. (2013). The NRC autocollimator calibration facility. Metrologia, 50(5), 433-440. https://doi.org/10.1088/0026-1394/50/5/433
  • [11] Yandayan, T., Geckeler, R. D., Just, A., Siewert, F., Grubert, B., Prieto, E., ... & Thalmann, R. (2017). Guidelines on the Calibration of Autocollimators. EURAMET Calibration Guide, (22).
  • [12] Huang, Y., Xue, Z., & Wang, H. Y. (2015, March). Comparison between angle interferometer and angle encoder during calibration of autocollimator. Ninth International Symposium on Precision Engineering Measurement and Instrumentation, China, 9446, 944624. International Society for Optics and Photonics. https://doi.org/10.1117/12.2180902
  • [13] Huang, Y., Xue, Z., Huang, M., & Qiao, D. (2018). The NIM continuous full circle angle standard. Measurement Science and Technology, 29(7), 074013. https://doi.org/10.1088/1361-6501/aac6a6
  • [14] Kim, J. A., Kim, J. W., Kang, C. S., Jin, J., & Eom, T. B. (2011). Precision angle comparator using self-calibration of scale errors based on the equal-division-averaged method. Proccedings of MacroScale, 2011. https://doi.org/10.7795/810.20130620F
  • [15] Pisani, M., & Astrua, M. (2017). The new INRIM rotating encoder angle comparator (REAC). Measurement Science and Technology, 28(4), 045008. https://doi.org/10.1088/1361-6501/aa5af6
  • [16] Geckeler, R. D., Krause, M., Just, A., Kranz, O., & Bosse, H. (2015). New frontiers in angle metrology at the PTB.Measurement, 73, 231-238. https://doi.org/10.1016/j.measurement.2015.05.010
  • [17] Just, A., Krause, M., Probst, R., & Wittekopf, R. (2003). Calibration of high-resolution electronic autocollimators against an angle comparator. Metrologia, 40(5), 288-294. https://doi.org/10.1088/0026-1394/40/5/011
  • [18] Probst, R., Wittekopf, R., Krause, M., Dangschat, H., & Ernst, A. (1998). The new PTB angle comparator. Measurement science and technology, 9(7), 1059-1066. https://doi.org/10.1088/0957-0233/9/7/009
  • [19] Geckeler, R. D., Křen, P., Just, A., Schumann, M., Krause, M., Lacey, I., & Yashchuk, V. V. (2019). Environmental influences on autocollimator-based angle and form metrology. Review of Scientific Instruments, 90(2), 021705. https://doi.org/10.1063/1.5057402
  • [20] Geckeler, R. D., Křen, P., Just, A., Schumann, M., & Krause, M. (2018). Influence of the air’s refractive index on precision angle metrology with autocollimators. Measurement Science and Technology, 29(7), 075002. https://doi.org/10.1088/1361-6501/aac1fc
  • [21] Han, Y., Tan, W., Dai, D., Zheng, J., & Fu, S. (2020, January). Analysis of influence of rotary table error on the laboratory calibration method for star tracker. Second Target Recognition and Artificial Intelligence Summit Forum, China, 11427, 114274A. International Society for Optics and Photonics. https://doi.org/10.1117/12.2553202
  • [22] Watanabe, T., Drijarkara, A. P., Samit, W., Vacharanukul, K., & Tonmueanwai, A. (2011). Self-calibratable rotary Table for angular Standards. The 10th International Symposium of Measurement Technology and Intelligent Instruments, Korea.
  • [23] Geckeler, R. D., Link, A., Krause, M., & Elster, C. (2014). Capabilities and limitations of the self-calibration of angle encoders. Measurement Science and Technology, 25(5), 055003. https://doi.org/10.1088/0957-0233/25/5/055003
  • [24] Kokuyama, W., Watanabe, T., Nozato, H., & Ota, A. (2016). Angular velocity calibration system with a self-calibratable rotary encoder. Measurement, 82, 246-253. https://doi.org/10.1016/j.measurement.2016.01.011
  • [25] Geckeler R. D., Fricke A., Elster C. (2006) Calibration of angle encoders using transfer functions. Measurement Science and Technology, 17(10), 2811-2818. https://doi.org/10.1088/0957-0233/17/10/036
  • [26] Wang, H., & Huang, Y (2015). Calibration of a high precision rotary table. Proc. SPIE 9446, Ninth International Symposium on Precision Engineering Measurement & Instrumentation, 944633. https://doi.org/10.1117/12.2181236
  • [27] Prieto, E., Ma del Mar Pérez, Yandayan, T., Przybylska, J., Just, A., & Geckeler, R. D. (2018). Guidelines on the Calibration of Angular Encoders. EURAMET Calibration Guide, (23).
  • [28] Huang, M., Liu, P. K., Xia, Y., Hu, Q., Li, M., & Tang, Q. (2017). Calibration of an Indexing Table Using a High Precision Angle Comparator. MATEC Web of Conferences, 95:07022. https://doi.org/10.1051/matecconf/20179507022
Uwagi
1. This research was supported by the Science Challenge Project of China (No. TZ2018006-0104).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d0becfd-f998-405f-a3fd-0ac3b85a43cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.