PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of bubble load to interpret particle transport across the pulp-froth interface in a flotation cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work demonstrates the use of bubble loads to understand the transport of particles across the pulp-froth interface in a flotation cell processing an Upper Group 2 chromitite seam (UG2) ore. Bubble loads were measured on the first primary cleaner cell of an operating flotation plant using a bubble load meter with a 20mm riser diameter. A bubble load value of 10.58grams/liter was obtained. The bubble load data was used to understand, entrainment and dropback of chromite as a function of particle size. By defining terms such as froth flow number and net dropback, it was found that chromite (known to be non-floatable) was also recovered through true flotation. The entrainment of chromite was found to be predominantly in -25 μm size while +25 μm size particles were found to be floatable and highly susceptible to dropping back. Net-dropback of chromite particles was found to increase with a decrease in chromite particle size contrary to expectation. An overall froth flow number of 69% was obtained.
Rocznik
Strony
54--64
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Institute for the Development of Energy for African Sustainability, University of South Africa, Florida, South Africa
Bibliografia
  • BHONDAYI, C. 2010. Measurements of particle loading on bubbles in froth flotation. MSc dissertation. University of Witwatersrand.
  • BHONDAYI, C., Moys, M.H., 2011. Determination of sampling pipe (riser) diameter for aflotation bubble load measuring device. Minerals Engineering.24, 1664–1676.
  • CHEGENI, M.H, ABDOLLAHY, M., KHALESI, M.R., 2016. Bubble loading measurement in a continuous flotation column. Minerals Engineering. 85, 49–54.
  • CAWTHORN, R.G. 2005. Pressure fluctuations and the formation of the PGE-rich Merensky and chromitite reefs. Bushveld Complex. Mineralium Deposita, 40(2), 231-235.
  • CAWTHORN, R., 2010. The Platinum Group Element Deposits of the Bushveld Complex in South Africa. Platinum Metals Review.
  • EKMEKCI. Z., BRADSHAW. D.J., ALLISON S.A., HARRIS. P.J., 2003. Effects of frother type and froth height on the flotation behavior of chromite in UG2 ore. Minerals Engineering., 16(10), 941–949.
  • ESKANLOU, A., KHALESI, M.R., ABDOLLAHY, M., 2018. Interactional effects of bubble size, particle size, and collector dosage on bubble loading in column flotation. Physicochem. Probl. Miner. Process., 54, 355-362.
  • DYER, C., 1995. An investigation into the properties of the froth phase in flotation process. M.Sc. thesis. University of the Witwatersrand.
  • HARRIS, T.A., 2000. Development of a flotation simulation methodology towards an optimisation of UG2 platinum flotation circuits. PhD thesis. University of Cape Town.
  • HAY, M.P., ROY, R., 2010, A case study of optimising UG2 flotation performance, Part 1: Bench, pilot and plant scale factors which influence Cr2O3 entrainment in UG2 flotation. Mineral Engineering 23 (55–867).
  • KING, R., HATTON, T., HULBERT, D., 1974. Bubble loading during flotation. Transactions of the Institute of Mining and Metallurgy. 83, C112–C115.
  • MCLAREN, C.H., DE VILLIERS, J.P.R., 1982. The platinum-group chemistry and mineralogy of the UG-2 chromitite layer of the Bushveld complex. Economic Geology, 77(6), 1348-1366.
  • MOYS, M.H., 1978, A study of a plug flow model for flotation froth behaviour. Int. J. Miner.Process., 5, 221-238.
  • MOYS, M.H., 1979. A study of processes occurring in flotation froths. PhD thesis. University of Natal.
  • NEETHLING, S.J., CILLIERS, J.J., 2002. The entrainment of gangue into a flotation froth. Int. J. Miner. Process. 64, 123–134.
  • PHILLIPS, R.E., JONES, R.T., CHENNELS, P., 2008. Commercialization of the ConRoast process. Third International Platinum Conference ‘Platinum in Transformation’, The Southern African Institute of Mining and Metallurgy,
  • RAHMAN. R.M., ATA. S., JAMESON. G.J., 2012. The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. International Journal of Mineral Processing 106-109, 70 – 77.
  • SAVASSI, O.N., ALEXANDER, D.J., FRANZIDIS, J-P., MANLAPIG, E.V., 1998. An empirical model for entrainment in industrial flotation plants. Miner. Eng. 11, 243–256.
  • SEAMAN, D. R, FRANZIDIS, J-P., MANLAPIG, E.V., 2004. Bubble load measurement in the pulp zone of industrial flotation machines—a new device for determining the froth recovery of attached particles. Int. J. Miner. Process., 74, 1-13.
  • WESSELDIJK, Q.I., REUTER. M.A., BRADSHAW. D.J., HARRIS, P.J.,1999. The flotation behaviour of chromite with respect to the beneficiation of UG2 ore. Miner. Eng., 12, 1177–1184.
  • YIANATOS, J.B., MOYS, M.H., CONTRERAS, F., VILLANUEVA, A., 2008. Froth Recovery of industrial flotation cells. Miner. Eng., 21, 817-827.
  • YIANATOS, J.B., CONTRERAS. F., 2010. Particle entrainment model for industrial flotation cells. Powder Technology 197, 260–267.
  • ZHENG, X., JOHNSON, N.W., FRANZIDIS, J.P., 2006. Modelling of entrainment in industrial flotation cells:water recovery and degree of entrainment. Minerals Engineering., 19, 1191–1203.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d0b5e68-716a-4275-bbf8-958dc899c630
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.