PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Crop Residues Management on Soil Fertility and Sugar Beet Productivity in Western Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The competitiveness of sugar beet in the Doukkala irrigated perimeter makes this crop the main one compared to wheat, vegetables and forage. However, the dominance of small plots drives farmers to practice 2 to 3 years rotation of sugar beet. This work, carried out on contrasting and representative soils between 2012 and 2019, aims to study the effects of sugar beet residues incorporation on the soil organic matter, soil properties, and sugar beet root yield and sugar content under reel field conditions and actual rotation system. The results showed that the rate of soil organic matter (SOM) increased by +28.8% during eight agricultural seasons. Plots that never received crops residues experienced an average decrease in SOM rate of -19%. The maximum average increase in the SOM rate of +194% was observed at the level of the plots, where sugar beet residues were incorporated six times. This variation in SOM is more marked in coarse-textured soils. The variations of Mg, K, P, Ca, Zn, B, CaCO3, soil pH, CEC are positively correlated with statistical significance with SOM variation. The multiple linear regression model for predicting the variation in SOM content, depending on soil texture, initial SOM content and number of residue incorporations, with (R2 = 0.81, RMSE = 26.15) shows that this variation is significantly favored by coarse soil elements and the number of residues incorporation and that it is unfavorable in soils with a dominant fine texture and initially rich in organic matter. Yield and sugar content were improved by 31% (67,45 Mg·ha-1 in 2012 and 86,38 Mg·ha-1 in 2019) for root yield and by 4% (16.68% in 2012 and 17,37% in 2019) for sugar content in plots with six residues incorporations. Data from this study suggest that the use of sugar beet residues is benefical for improving soil properties and thus increasing soil organic status and crop performances.
Twórcy
autor
  • Agronomy Department, Hassan II Agronomic and Veterinary Institute, PO Box 6202 Rabat-Institute 10101, Rabat, Morocco
  • Agronomy Department, Hassan II Agronomic and Veterinary Institute, PO Box 6202 Rabat-Institute 10101, Rabat, Morocco
  • Agronomy Department of Natural Resources and Environment, Hassan II Agronomic and Veterinary Institute, PO Box 6202 Rabat-Institute 10101, Rabat, Morocco
  • Agronomy Department, Hassan II Agronomic and Veterinary Institute, PO Box 6202 Rabat-Institute 10101, Rabat, Morocco
  • National Institute of Agronomic Research, Avenue De La Victoire, Rabat BP 415 Rp, Rabat, 10060, Morocco
  • Laboratory of Geosciences and Environmental Techniques, Department of Earth Sciences, Faculty of Sciences, Chouaïb Doukkali University, BP 20, 24000 El Jadida, Morocco
  • Laboratory of Geosciences and Environmental Techniques, Department of Earth Sciences, Faculty of Sciences, Chouaïb Doukkali University, BP 20, 24000 El Jadida, Morocco
Bibliografia
  • 1. Aciego Pietri, J.C., Brookes, P.C. 2008. Nitrogen mineralisation along a pH gradient of a silty loam UK soil. Soil Biology and Biochemistry, 40(3), 797–802. https://doi.org/10.1016/j.soilbio.2007.10.014
  • 2. Archer, D.W., Liebig, M.A., Kronberg, S.L. 2020. Dryland crop production and economic returns for crop residue harvest or grazing. September 2019, 1–14. https://doi.org/10.1002/agj2.20100
  • 3. Badraoui, M., Agbani, M., Soudi, B. 2000. Evolution de la qualité des sols sous mise en valeur intensive au Maroc, 2–3.
  • 4. Bates, R.G., Roy, R.N., Robinson, R.A. 1973. Buffer Standards of Tris(Hydroxymethyl)methylglycine (“Tricine”) for the Physiological Range pH 7.2 to 8.5. Analytical Chemistry, 45(9), 1663–1666. https://doi.org/10.1021/ac60331a022
  • 5. Beretta, A.N., Silbermann, A.V., Paladino, L., Torres, D., Bassahun, D., Musselli, R., García-Lamohte, A. 2014. Análisis de textura del suelo con hidrómetro: Modificaciones al método de Bouyoucus. Ciencia e Investigacion Agraria, 41(2), 263–271. https://doi.org/10.4067/S0718-16202014000200013
  • 6. Bi, L., Zhang, B., Liu, G., Li, Z., Liu, Y., Ye, C., Yu, X., Lai, T., Zhang, J., Yin, J., Liang, Y. 2009. Longterm effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agriculture, Ecosystems and Environment, 129(4), 534–541. https://doi.org/10.1016/j.agee.2008.11.007
  • 7. Cances, A.-L. 2005. Diagnostic des systèmes de production du périmètre irrigué du Tadla (Maroc), 149. http://www.isiimm.agropolis.fr/OSIRIS/report/moHaNfisFINET2002_PerimProd.pdf
  • 8. Chalise, K.S., Singh, S., Wegner, B.R., Kumar, S., Pérez-Gutiérrez, J.D., Osborne, S.L., Nleya, T., Guzman, J., Rohila, J.S. 2019. Cover crops and returning residue impact on soil organic carbon, bulk density, penetration resistance, water retention, infiltration, and soybean yield. Agronomy Journal, 111(1), 99–108. https://doi.org/10.2134/agronj2018.03.0213
  • 9. Chintala, R., Mollinedo, J., Schumacher, T.E., Malo, D.D., Julson, J.L. 2014. Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3), 393–404. https://doi.org/10.1080/03650340.2013.789870
  • 10. Collaud, G. 2014. Fertilité à long terme. Ufa, 11, 45.
  • 11. COSUMAR. 2019. De valeurs partagées ans. https://www.cosumar.co.ma/
  • 12. Côté, L., Brown, S., Paré, D., Fyles, J., Bauhus, J. 2000. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood. Soil Biology and Biochemistry, 32(8–9), 1079–1090. https://doi.org/10.1016/S0038-0717(00)00017-1
  • 13. Davet, P. 1996. Vie microbienne du sol et production végétale. Editions Quae.
  • 14. Ge, X., Wang, L., Zhang, W., Putnis, C.V. 2020. Molecular Understanding of Humic Acid-Limited Phosphate Precipitation and Transformation. Environmental Science & Technology, 54(1), 207–215. https://doi.org/10.1021/acs.est.9b05145
  • 15. Götze, P., Rücknagel, J., Wensch-dorendorf, M., Märländer, B. 2017. Crop rotation effects on yield, technological quality and yield stability of sugar beet after 45 trial years. European Journal of Agronomy, 82, 50–59. https://doi.org/10.1016/j.eja.2016.10.003
  • 16. Harraq, A., Sadiki, K., Bourioug, M., Bouabid, R. 2022. Journal of the Saudi Society of Agricultural Sciences Organic fertilizers mineralization and their effect on the potato ‘Solanum tuberosum’ performance in organic farming. Journal of the Saudi Society of Agricultural Sciences, 21(4), 255–266. https://doi.org/10.1016/j.jssas.2021.09.003
  • 17. Hartl, W., Putz, B., Erhart, E. 2003. Influence of rates and timing of biowaste compost application on rye yield and soil nitrate levels. European Journal of Soil Biology, 39(3), 129–139. https://doi.org/10.1016/S1164-5563(03)00028-1
  • 18. Hättenschwiler, S., Vitousek, P.M. 2000. Hattenschwiller & Vitousek 2000 Polyphenols and nutrient cycling. Tree, 15(6), 238–243.
  • 19. Hoch, A.R., Reddy, M.M., Aiken, G.R. 2000. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades. Geochimica et Cosmochimica Acta, 64(1), 61–72. https://doi.org/10.1016/S0016-7037(99)00179-9
  • 20. Islamgulov, D., Alimgafarov, R., Ismagilov, R., Bakirova, A., Muhametshin, A., Enikiev, R., Ahiyarov, B., Ismagilov, K., Kamilanov, A., Nurligajnov, R. 2019. Productivity and technological features of sugar beet root crops when applying of different doses of nitrogen fertilizer under the conditions of the middle cis-ural region. Bulgarian Journal of Agricultural Science, 25, 90–97.
  • 21. ISO 10693. 1995. No Title. AFNOR, Ed. (Détermination de la teneur en carbonate-Méthode Volumétrique (Indice de classement X), 31–105.
  • 22. Vizier J.F. 1978. Etude de la dynamique du fer dans des sols évoluant sous l ’ effet d ’ un excès d ’ eau Etude expérimentale sur des sols de rizières de Madagascar, 16, 23–41.
  • 23. Joshi, A.B., Vann, D.R., Johnson, A.H., Miller, E.K. 2003. Nitrogen availability and forest productivity along a climosequence on Whiteface Mountain, New York, 33(10), 1880–1891.
  • 24. Li, Z. 2021. Return of crop residues to arable land stimulates N 2 O emission but mitigates NO 3 − leaching: a meta-analysis, 3.
  • 25. Lindsay, W.L., Norvell, W. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428.
  • 26. Lu, X. 2020. A meta-analysis of the effects of crop residue return on crop yields and water use efficiency. PLoS ONE, 15(4), 1–18. https://doi.org/10.1371/journal.pone.0231740
  • 27. Ma, X., Zhang, W., Zhang, X., Bao, X., Xie, H., Li, J., He, H., Liang, C., Zhang, X. 2022. Dynamics of microbial necromass in response to reduced fertilizer application mediated by crop residue return. Soil Biology and Biochemistry, 165(June 2021), 108512. https://doi.org/10.1016/j.soilbio.2021.108512
  • 28. Malhi, S.S., Lemke, R., Wang, Z.H., Chhabra, B.S. 2006. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil and Tillage Research, 90(1–2), 171–183.
  • 29. McGrath, S.P., Sanders, J.R., Shalaby, M.H. 1988. The effects of soil organic matter levels on soil solution concentrations and extractabilities of manganese, zinc and copper. Geoderma, 42(2), 177–188. https://doi.org/10.1016/0016-7061(88)90033-X
  • 30. Metson, A.J. 1957. Methods of chemical analysis for soil survey samples. Soil Science, 83(3), 245.
  • 31. Minasny, B., McBratney, A.B. 2018. Limited effect of organic matter on soil available water capacity. European Journal of Soil Science, 69(1), 39–47. https://doi.org/10.1111/ejss.12475
  • 32. Mustin, M. 1987. Le compost : gestion de la matière organique / Michel Mustin, 672.
  • 33. Naman, F., Soudi, B., Chiang, C.N. 2018. Evolution of carbon and nitrogen biomass of vertisol and fersiallitic soil after previous cultivation of wheat and sugar beet in the irrigated perimeter of the of the Doukkala in Morocco. Journal of Materials Environmental Sciences, 9(5), 1544–1550. https://www.jmaterenvironsci.com/Document/vol9/vol9_N5/170-JMES-3438-Naman.pdf
  • 34. Naman, F., Soudi, B., El Adlouni, C., Chiang, C.N. 2015. Bilan humique des sols sous intensification agricole: Cas des sols du périmetre irrigué des Doukkala au Maroc. Journal of Materials and Environmental Science, 6(12), 3574–3581.
  • 35. Natelhoffer, K.J., Fry, B. 1988. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science of America Journal, 52(6), 1633–1640. https://doi.org/10.2136/sssaj1988.03615995005200060024x
  • 36. Olsen, S.R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture, 939.
  • 37. Perassi, I., Borgnino, L. 2014. Adsorption and Surface precipitation of phosphate onto CaCO3-montmorillonite: Effect of pH, ionic strength and competition with humic acid. Geoderma, 232–234, 600–608. https://doi.org/10.1016/j.geoderma.2014.06.017
  • 38. Rahn, C.R., Bending, G.D., Turner, M.K., Lillywhite, R.D. 2003. Management of N mineralization from crop residues of high N content using amendment materials of varying quality. Soil Use and Management, 19(3), 193–200. https://doi.org/10.1079/sum2003188
  • 39. Redani, L., Doukkali, M.R., Lebailly, P. 2015. Analyse économique de la filière sucrière Au Maroc., 3, 37–44.
  • 40. Ros, M., Klammer, S., Knapp, B., Aichberger, K., Insam, H. 2006. Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use and Management, 22(2), 209–218. https://doi.org/10.1111/j.1475-2743.2006.00027.x
  • 41. Rossi, G., Beni, C. 2018. Effects of medium-term amendment with diversely processed sewage sludge on soil humification—mineralization processes and on Cu, Pb, Ni, and Zn bioavailability. Plants, 7(1). https://doi.org/10.3390/plants7010016
  • 42. Sagardoy, R., Morales, F., López-Millán, A.F., Abadía, A., Abadía, J. 2009. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biology, 11(3), 339–350. https://doi.org/10.1111/j.1438-8677.2008.00153.x
  • 43. Simard, R.R. 1993. Ammonium acetate-extractable elements. Soil Sampling and Methods of Analysis, 1, 39–42.
  • 44. Soudi, B., Naâman, F., Chiang, C. 2000. Problématique de gestion de la matière organique des sols : cas des périmètres irrigués du Tadla et des Doukkala. Intensification Agricole et Qualité Des Sols et Des Eaux’, 2–3.
  • 45. Subbarao, G.V., Rondon, M., Ito, O., Ishikawa, T., Rao, I.M., Nakahara, K., Lascano, C., Berry, W.L. 2007. Biological nitrification inhibition (BNI) - Is it a widespread phenomenon? Plant and Soil, 294(1–2), 5–18. https://doi.org/10.1007/s11104-006-9159-3
  • 46. Tahiri, A., Destain, J., Druart, P., Thonart, P. 2014. Propriétés physico-chimiques et biologiques des substances humiques en relation avec le développement végétal (synthèse bibliographique). Biotechnology, Agronomy and Society and Environment, 18(3), 436–445.
  • 47. Turmel, M.S., Speratti, A., Baudron, F., Verhulst, N., Govaerts, B. 2015. Crop residue management and soil health: A systems analysis. Agricultural Systems, 134, 6–16. https://doi.org/10.1016/j.agsy.2014.05.009
  • 48. Vervaet, H., Massart, B., Boeckx, P., Van Cleemput, O., Hofman, G. 2002. Use of principal component analysis to assess factors controlling net N mineralization in deciduous and coniferous forest soils. Biology and Fertility of Soils, 36(2), 93–101. https://doi.org/10.1007/s00374-002-0512-2
  • 49. Walkley, A., Black, I.A. 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38). https://doi.org/10.1097/00010694-193401000-00003
  • 50. Wu, G.Q., Feng, R.J., Liang, N., Yuan, H.J., Sun, W. Bin. 2015. Sodium chloride stimulates growth and alleviates sorbitol-induced osmotic stress in sugar beet seedlings. Plant Growth Regulation, 75(1), 307–316. https://doi.org/10.1007/s10725-014-9954-4
  • 51. Xiao, Y., Zhou, M., Li, Y., Zhang, X., Wang, G., Jin, J., Ding, G., Zeng, X., Liu, X. 2022. Soil Aggregate Stability under Corn – Soybean Rotation in Surface Mollisols.
  • 52. Xu, G., Wei, L.L., Sun, J.N., Shao, H.B., Chang, S.X. 2013. What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct or indirect mechanism? Ecological Engineering, 52, 119–124. https://doi.org/10.1016/j.ecoleng.2012.12.091
  • 53. Youssef, M.M. 2018. Effect of sugar beet plant residues on population density of root knot nematode, Meloidogyne incognita infecting cowpea and biochemical changes in treated plants. Pakistan Journal of Nematology, 36(1), 41–48. https://doi.org/10.18681/pjn.v36.i01.p41-48
  • 54. Zanin, L., Tomasi, N., Cesco, S., Varanini, Z., Pinton, R. 2019. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Frontiers in Plant Science, 10(May), 1–10. https://doi.org/10.3389/fpls.2019.00675
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d081d7e-a612-4544-9fa3-f0750c4383cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.