PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Municipal waste management based on geomechanical assessments of the landfill site slope - a case study in southern Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over time, municipal waste landfills tend to go higher and become larger. The stability of the municipal landfill slope is one of the basic geotechnical tasks. This task ensures continuous waste deposition on the landfill surface and safety in its surroundings. With the increasing height and volume of the landfill, it is difficult to estimate the available area of the municipal landfill, where more waste can be safely deposited due to a number of variable factors, such as the geotechnical conditions of the municipal landfill, the morphological composition, age, and degree of compaction and decomposition of the deposited waste. This paper presents an attempt to determine the available area of a landfill where municipal waste can be safely deposited for further operation. For this purpose, a numerical slope stability analysis was carried out using the finite difference method code FLAC3D, presenting the actual geomechanical conditions of a landfill located in southern Poland. Based on the numerical results, options for municipal waste storage were presented and discussed. The proposed design chart aims to help landfill owners/managers make an adequate decision in terms of landfill planning and design.
Rocznik
Strony
185--198
Opis fizyczny
Bibligr. 65 poz.
Twórcy
  • Central Mining Institute - National Research Institute, Department of Extraction Technologies, Rockburst and Risk Assessment, Poland
  • Central Mining Institute - National Research Institute, Department of Extraction Technologies, Rockburst and Risk Assessment, Poland
  • Central Mining Institute - National Research Institute, Department of Environmental Monitoring, Poland
Bibliografia
  • [1] Knopek T, Dabrowska D. The use of the contamination index and the LWPI index to assess the quality of groundwater in the area of a municipal waste landfill. Toxics 2021;9(3):66. https://doi.org/10.3390/toxics9030066.
  • [2] Minelgaite A, Liobikiene G. Waste problem in European Union and its influence on waste management behaviors. Sci Total Environ 2019;667:86-93. https://doi.org/10.1016/j.scitotenv.2019.02.313.
  • [3] Araya MN. A review of effective waste management from an EU, national, and local perspective and its influence: the management of biowaste and anaerobic digestion of municipal. Solid Waste J Environ Protect 2018;9(6). https://doi.org/10.4236/jep.2018.96041.
  • [4] Agarwal R, Chaudhary, Singh J. Waste Management initiatives in India for human well-being. Eur Sci J 2015;11(10). Retrieved from, https://eujournal.org/index.php/esj/article/view/5715.
  • [5] EEA Report. Managing municipal solid waste-a review of achievements in 32 European countries. Copenhagen: European Environment Agency; 2013.
  • [6] Malinowski M. Changes in municipal waste management following the amendment of the act on maintaining the cleanliness and order in communes. Commission of technical rural infrastructure, polish academy of sciences. Cracow Branch; 12/2011. p. 103-15.
  • [7] Białecka B, Grabowski J. Problems of municipal waste management on waste dumping grounds in the light of implementation of EU requirements, Scientific Papers of GIG, vol. 2. Mining and Environment/Central Mining Institute; 2002. p. 53-68.
  • [8] Wąsowicz K, Famielec S, Chełkowski M. Municipal waste management in modern cities. Toruń: Wydawnictwo ‘Dom Organizatora’; 2020.
  • [9] Ferronato N, Torretta V. Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Publ Health 2019;16(6):1060. https://doi.org/10.3390/ijerph16061060.
  • [10] Bilitewski B, Wagner J, Reichenbach J. Best practice municipal waste management. Umweltbundesamt, Dresden: German Environment Agency, Publisher; 2018.
  • [11] Denafas G, Ruzgas T, Martuzevicius D, Shmarin S, Hoffmann M, Mykhaylenko V, et al. Seasonal variation of municipal solid waste generation and composition in four East European cities. Resour Conserv Recycl 2014;89:22-30. https://doi.org/10.1016/j.resconrec.2014.06.001.
  • [12] Pandey RK, Shrivastava R, Tiwari RP. Investigation of shear strength properties of municipal solid waste and slope stability analysis. Int J Res Appl Sci Eng Technol 2017;5(9): 491-6. https://doi.org/10.22214/ijraset.2017.9071.
  • [13] Fan XP, Huang MS, Wang HR. Stability analysis of a municipal solid waste slope layered by aging. Yantu Lixue/ Rock Soil Mech 2016;37(6):1715-20. https://doi.org/10.16285/j.rsm.2016.06.023.
  • [14] Zheng Y, Liu S, Zhai Yanliang, Zhang Wei. Research on stability of slope of landfill site based on FLAC3D. In: Proceedings of the International Conference on Advances in Energy, Environment and Chemical Engineering. Atlantis Press. 9; 2015. p. 492-6.
  • [15] Zydron T, Cholewa M, Demczuk P. Shear strength of municipal solid waste vs. slope stability analysis. Acta Sci Pol Form Circumiectus 2015;14(4):141-55.
  • [16] Yu L, Batlle F. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill. Waste Manag 2011;31(12):2484-96. https://doi.org/10.1016/j.wasman.2011.07.012.
  • [17] Shan HY, Fan TH. In-Situ tests and slope stability analysis of municipal solid waste landfill. In: Chen Y, Zhan L, Tang X, editors. Advances in environmental geotechnics. Berlin, Heidelberg: Springer; 2010. https://doi.org/10.1007/978-3- 642-04460-1_60.
  • [18] Stark TD, Huvaj-Sarihan N, Li G. Shear strength of municipalsolid waste for stability analyses. Environ Geol 2009;57: 1911-23. https://doi.org/10.1007/s00254-008-1480-0.
  • [19] Blight G. Slope failures in municipal solid waste dumps and landfills: a review. Waste Manag Res 2008;26(5):448-63. https://doi:10.1177/0734242X07087975.
  • [20] Koelsch F, Fricke K, Mahler C, Damanhuri E. Stability of landfills - the Bandung dumpsite disaster. In: The tenth international waste management and landfill symposium. Italy: Cagliari; 2005.
  • [21] Eid HT, Stark T, Evans WD, Sherry PE. Municipal solid waste slope failure I: waste and foundation soil properties. Geotech Geoenviron Eng 2000;126:397-407. https://doi:10.1061/(ASCE)1090-0241(2000)126:5(397).
  • [22] National waste management plan 2022, Warszawa. 2016.
  • [23] Xie Y, Xue J, Gnanendran CT, Xie K. Geotechnical properties of fresh municipal solid wastes with different compositions under leachate exposure. Waste Manag 2022;149:207-17. https://doi.org/10.1016/j.wasman.2022.06.020.
  • [24] Gomes C, Lopes ML, Oliveira PJV. Municipal solid waste shear strength parameters defined through laboratorial and in situ tests. J Air Waste Manag Assoc 2013;63(11):1352-68. https://doi.org/10.1080/10962247.2013.813876.
  • [25] Bareither CA, Benson CH, Edil TB. Effects of waste composition and decomposition on the shear strength of municipal solid waste. J Geotech Geoenviron Eng 2012;138(10):1161-74. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000702.
  • [26] Reddy KR, Hettiarachchi H, Gangathulasi J, Bogner JE. Geotechnical properties of municipal solid waste at different phases of biodegradation. Waste Manag 2011;31(11):2275-86. https://doi.org/10.1016/j.wasman.2011.06.002.
  • [27] Singh MK, Fleming IR. Application of a hyperbolic model to municipal solid waste. Geotechnique 2011;61(7):533-54. https://doi.org/10.1680/geot.8.P.051.
  • [28] Reddy KR, Hettiarachchi H, Gangathulasi J, Parakalla NS, Bogner JE, Lagier T. Compressibility and shear strength of municipal solid waste under short-term leachate recirculation operations. Waste Manag Res 2009;27(6):578-87. https://doi.org/10.1177/0734242X09103825.
  • [29] Singh MK, Sharma JS, Fleming IR. Shear strength testing of intact and recompacted samples of municipal solid waste. Can Geotech J 2009;46(10):1133-45. https://doi.org/10.1139/T09-052.
  • [30] Bray JD, Zekkos D, EJr Kavazanjian, Athanasopoulos GA, Riemer MF. Shear strength of municipal solid waste. J Geotech Geoenviron Eng 2009;135(6):709-22. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000063.
  • [31] Cholewa M. Składowisko odpadów komunalnych w Chełmku - analiza stateczności skarpy przy zmiennych warunkach geotechnicznych. Infrastr. Ekol. Ter. Wiej. 2012;2/ IV:117-27.
  • [32] Cała M, Olesiak S. Analiza statecznosci zboczy drugiej kwatery Nowego składowiska odpadów komunalnych. Zakopanem Górn Geoinz 2007;31(3):57-69.
  • [33] Koda E. Składowiska odpadów. Statecznosc zboczy wysypisk odpadów komunalnych (Slope stability of the municipal landfill). XXIV ogólnopolskie warsztaty pracy projektanta konstrukcji. Wisła; 2009 (in Polish).
  • [34] Grabowski J. Opracowanie analiz dotyczących składowisk odpadów w województwie sląskim. Katowice: Praca niepublikowana GIG; 2001 (in Polish).
  • [35] Aktualizacja planu gospodarki odpadami dla województwa sląskiego. Urząd Marszałkowski w Katowicach. Katowice; 2009 (in Polish).
  • [36] Dąbrowska D, Witkowski AJ. Groundwater and human health risk assessment in the vicinity of a municipal waste landfill in tychy, Poland. Appl Sci 2022;12:12898. https://doi.org/10.3390/app122412898.
  • [37] Rykała W, Dąbrowska D. Risk assessment for groundwater in the region of municipal landfill systems in Tychy-Urbanowice (Southern Poland). Environ Socio-economic Stud 2020; 8(1):9-17. https://doi.org/10.2478/environ-2020-0002.
  • [38] Sowa J. Dokumentacja geologiczno-inzynierska dla projektowanego zakładu kompleksowego zagospodarowania odpadów komunalnych, proGEO Sp. . z o.o. Wrocław; 2012 (in Polish).
  • [39] Sitek S, Witkowski A, Kowalczyk A, Zurek-Pucek AM. Impact assessment of municipal landfill in Tychy on groundwater environment - modelling study. Biul Panstwowego Inst Geol (1989) 2010;442:147-52.
  • [40] Białecka B, Grabowski J. Składowisko odpadów komunalnych i zagrozenia związane z jego eksploatacją, vol. 1. Ekologia/PIE; 2004. p. 1-13 (in Polish).
  • [41] Czop M, Herzig J, Kotowski T. Stress simulation and settlement prediction of subsoil beneath the municipal landfill ”Barycz III” (southern Poland). Przeglad Geol 2001;49(11):1060-6.
  • [42] Górksi M. Zasady postępowania z odpadami. Przegląd Komunalny 2009;1:54-5 (in Polish).
  • [43] Wiencław E, Koda E. Flow and transport modelling in a landfill with a vertical bentonite barrier. Przeglad Geol 2005; 53(9):770-5 (in Polish).
  • [44] Łuczak-Wilamowska B. Geological conditions of municipal waste landfilling. Biul Panstwowego Inst Geol (1989) 2013; 455:1-142 (in Polish).
  • [45] Nguyen PMV, Wrana A, Rajwa S, Różański Z, Frączek R. Slope stability numerical analysis and landslide prevention of coal mine waste dump under the impact of rainfallda case study of Janina mine, Poland. Energies 2022;15:8311. https://doi.org/10.3390/en15218311.
  • [46] Nguyen PMV. Impact of longwall mining on slope stability - a case study. Studia Geotechnica Mech 2022;44(4):282-95. https://doi.org/10.2478/sgem-2022-0019.
  • [47] Nguyen PMV, Niedbalski Z. Numerical modeling of Open Pit (OP) to Underground (UG) transition in coal mining. Studia Geotechnica Mech 2016;38(3):35-48. https://doi.org/10.1515/sgem-2016-0023.
  • [48] Itasca Consulting Group Inc. FLAC 3D v. 5.0. User’s Manual; 2012.
  • [49] Cała M. Convex and concave slope stability analyses with numerical methods. Arch Min Sci 2007;52(1):75-89.
  • [50] Lorig L, Varona P. Numerical analysis. Chapter 10. In: Wyllie DC, Mah CW, editors. Rock slope engineering. Civil and mining; 2004. p. 218-44.
  • [51] Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min Sci 2003;40(3):283-353. https://doi.org/10.1016/S1365-1609(03)00013-3.
  • [52] Cała M, Flisiak J. Slope stability analysis with FLAC and limit equilibrium methods. In: Bilaux, Rachez, Detournay, Hart) AA, editors. FLAC and NumericalModeling in geomechanics. Balkema Publishers; 2001. p. 111-4.
  • [53] Daciolo LVP, Correia NS, Boscov MUG. Extensive database of MSW shear strength parameters obtained from labo- ratorial direct shear tests: proposal for data classification. Waste Manag 2022;140:245-59. https://doi.org/10.1016/j.wasman.2021.09.015.
  • [54] Feng SJ, Gao KW, Chen YX, Li Y, Zhang LM, Chen HX. Geotechnical properties of municipal solid waste at Laogang Landfill, China. Waste Manag 2017;63:354-65. https://doi.org/10.1016/j.wasman.2016.09.016.
  • [55] Dixon N, Langer U, Gotteland P. Classifcation and mechanical behavior relationships for municipal solid waste: study using synthetic wastes. J Geotech Geoenviron Eng 2008;134(1):79-90. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(79).
  • [56] Gabr MA, Hossain MS, Barlaz MA. Shear strength parameters of municipal waste with leachate recirculation. J Geotech Geoenviron Eng 2007;133(4):478-84. https://doi.org/10.1061/ (ASCE)1090-0241(2007)133:4(478).
  • [57] Dixon N, Russell D, Jones V. Engineering properties of municipal solid waste. Geotext Geomembranes 2005;23(3): 205-33. https://doi.org/10.1016/j.geotexmem.2004.11.002.
  • [58] Garbulewski K. Geotechnika środowiskowa. Zeszyt I. Skład i geotechniczne własciwosci odpadów komunalnych. Wydawnictwo SGGW; 1999. p. 56.
  • [59] Jessberger HL. Geotechnical aspects of landfill design and construction, Part 2: materials parameters and test methods. Institution of Civil Engineers Geotech. Eng J 1994;107(2): 105-13. https://doi.org/10.1680/igeng.1994.26378.
  • [60] Turczynski U. Geotechnische aspekte beim aufbau von Mehrkomponentendeponien. Dissertation. TU Dresden; 1988.
  • [61] Hustrulid WA, McCarter MK, van Zyl DJA. Slope stability in surface mining. Littleton, Colo.: Society for Mining, Metallurgy, and Exploration; 2000. p. 442.
  • [62] Nowacki J, Naborczyk J, Petrasz J, Sala A. Instrukcja obserwacji i badan osuwisk drogowych. Generalna dyrekcja dróg publicznych, wydaw. Print. Kraków; 1999. p. 72 (in Polish).
  • [63] Zondo S. Review of the waste slope stability design of a landfill site in Gauteng. 4th African regional conference on geosynthetics (GeoAfrica 2023). E3S Web of Conf 2023;368:02004. https://doi.org/10.1051/e3sconf/202336802004.
  • [64] Koda E, Kiersnowska A, Kawalec J, Osinski P. Landfill slope stability improvement incorporating reinforcements in reclamation process applying observational method. Appl Sci 2020;10(5):1572. https://doi.org/10.3390/app10051572.
  • [65] Keskin MS, Kezer S. Stability of MSW landfill slopes reinforced with geogrids. Appl Sci 2022;12(22):11866. https://doi.org/10.3390/app122211866.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d06d6f4-77a0-42b7-89c5-e1289ff62565
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.