PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hot Pressed K0.5Na0.5NbO3 Material for Piezoelectric Transformer for Energy Harvesting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An optimized method of vibration Energy Harvesting is based on a step-down transformer that regulates the power flow from the piezoelectric element to the desired electronic load. Taking into account parameters of the whole system, the “optimal” voltage gain the piezoelectric transformer can be determined where the harvested power is maximized for the actual level of mechanical excitation. Consequently the piezoelectric transformers can be used to boost up the conversion of mechanical strain into electrical power with considerable potential in Energy Harvesting applications. Nowadays however, the most important factor is usage of lead free material for its construction. Additional desired parameters of such ceramics include high value of piezoelectric coefficients, low dielectric losses and reasonable power density. This work for first time proposes a lead free K0.5Na0.5NbO3 (KNN) material implementation for stack type of piezoelectric transformer that is designed for load efficiency optimization of vibration energy harvester.
Twórcy
autor
  • University of Silesia, Institute of Technology and Mechatronics, 12 Żytnia Str.,41-200 Sosnowiec, Poland
autor
  • University of Silesia, Institute of Technology and Mechatronics, 12 Żytnia Str.,41-200 Sosnowiec, Poland
  • University of Silesia, Institute of Technology and Mechatronics, 12 Żytnia Str.,41-200 Sosnowiec, Poland
autor
  • University of Silesia, Institute of Technology and Mechatronics, 12 Żytnia Str.,41-200 Sosnowiec, Poland
autor
  • EMPA, Swiss Federal Laboratories for Materials Science and Technology, Laboratory For High Performance Ceramics, 8600 Duebendorf, Switzerland
Bibliografia
  • [1] A. Erturk, D. J. Inman, Piezoelectric Energy Harvesting, John Wiley & Sons (2011).
  • [2] S. W. Arms, C. P. Townsend, D. L. Churchill, S. M. Moon, N. Phan, Energy Harvesting Wireless Sensors for Helicopter Damage Tracking, Proceedings of AHS International Forum 62, HUMS III session, Phoenix, AZ, pp. 1-6 (2006).
  • [3] S. M. Rakshit, M. Hempel, P. Shrestha, F. Rezaei, H. Sharif, J. Punwani, M. Stewart, Energy Analysis in Deploying Wireless Sensor Networks for On-Board Real-Time Railcar Status Monitoring, 2015 Joint Rail Conference San Jose, California, USA, Paper No. JRC2015-5765, pp. V001T03A005-14 (2015).
  • [4] S. Saadat, C. Stuart, G. Carr, J. Payne, 2014 Joint Rail Conference Colorado Springs, Colorado, USA, Paper No. JRC2014-3860, pp. V001T05A002-7 (2014).
  • [5] R. Torah, P. Glynne-Jones, M. Tudor, T. O’Donnell, S. Roy, S. Beeby, Meas. Sci. Technol. 19, 125202-125210 (2008).
  • [6] W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity: evolution and future of a technology, Springer Science & Business Media (2008).
  • [7] S. Priya, D. J. Inman, Energy Harvesting Technologies, Springer US (2009).
  • [8] M. Ichiki, L. Zhang, M. Tanaka, R. Maeda, J. Europ. Ceram. Soc. 24, 1693-1697 (2004).
  • [9] M. Demartin-Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385-392 (2004).
  • [10] D. Lin, K. W. Kwok, H. L. W. Chan, J. Appl. Phys. 102, 074113 (2007).
  • [11] X. Duan, D. Jia, Z. Wu, Z. Tian, Z. Yang, S. Wang, Y. Zhou, Scripta Mater. 68, 104-107 (2013).
  • [12] M. Adamczyk, L. Kozielski, M. Pawełczyk, Ceram. Int. 34, 1617-1622 (2008).
  • [13] R. Zuo, J. Roodel, R. Chen, L. Li, J. Am. Ceram. Soc. 89, 2010-2015 (2006).
  • [14] K. Wang, J.-F. Li, J. Am. Ceram. Soc. 93, 1101-1107 (2010).
  • [15] I. T. Seo, K. H. Cho, H. Y. Park, S. J. Park, M. K. Choi, S. Nahm, H. G. Lee, H. W. Kang, H. J. Lee, J. Am. Ceram. Soc. 91, 3955-3960(2008).
  • [16] H. M. Rietveld, J. Appl. Crystallogr. 2, 65-71 (1969).
  • [17] R. Gaur, K. C. Singh, R. Laishram, Ceram. Int. 41, 1413-1420 (2015).
  • [18] H. E. Mgbemere, G. A. Schneider, Funct. Mater. Lett. 25, 1-9 (2010).
  • [19] K. Kakimoto, T. Sumi, I. Kagomiya, Jpn J. Appl. Phys. 49, 09DM10 (2010).
  • [20] B. Orayech, A. Faik, G. A. López, O. Fabelo, J. M. Igartua, J. Appl. Crystallogr. 48, 1-16 (2015).
  • [21] S. Zhang, J. B. Lim, H. J. Lee, T. R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56 (8), 1523-1527 (2009).
  • [22] L. Pintiliea, M. I. Vrejoiu, G. Le Rhun, M. Alexe, J. Appl. Phys. 101, 064109 (2007).
  • [23] IRE Standards on Piezoelectric Crystals: Measurement on Piezoelectric Ceramics IEEE, New York (1961).
Uwagi
EN
1. The research was supported by Minister of Science and Higher Education in a frame of „Inkubator Innowacyjności+” grant no. 2/NAB2/II+/2017: „Odzyskiwanie energii wibracji z aplikacji chodnikowych i drogowych”.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d019ecd-e761-45c7-85c8-43c17f69e388
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.