DECOMPOSITIONS OF COMPLETE 3-UNIFORM HYPERGRAPHS INTO CYCLES OF CONSTANT PRIME LENGTH

R. Lakshmi and T. Poovaragavan

Communicated by Andrzej Żak

Abstract. A complete 3-uniform hypergraph of order n has vertex set V with |V| = n and the set of all 3-subsets of V as its edge set. A t-cycle in this hypergraph is $v_1, e_1, v_2, e_2, \ldots, v_t, e_t, v_1$ where v_1, v_2, \ldots, v_t are distinct vertices and e_1, e_2, \ldots, e_t are distinct edges such that $v_i, v_{i+1} \in e_i$ for $i \in \{1, 2, \ldots, t-1\}$ and $v_t, v_1 \in e_t$. A *decomposition* of a hypergraph is a partition of its edge set into edge-disjoint subsets. In this paper, we give necessary and sufficient conditions for a decomposition of the complete 3-uniform hypergraph of order n into p-cycles, whenever p is prime.

Keywords: uniform hypergraph, cycle decomposition.

Mathematics Subject Classification: 05C65, 05C85.

1. INTRODUCTION

A hypergraph \mathcal{H} consists of a finite nonempty set V of vertices and a set $\mathcal{E} = \{e_1, e_2, \ldots, e_m\}$ of edges where each $e_i \subseteq V$ with $|e_i| > 0$ for $i \in \{1, 2, \ldots, m\}$. If $|e_i| = h$, then we call e_i an h-edge. If every edge of \mathcal{H} is an h-edge for some h, then we say that \mathcal{H} is h-uniform. The complete h-uniform hypergraph $K_n^{(h)}$ is the hypergraph with vertex set V, where |V| = n, in which every h-subset of V determines an h-edge. It then follows that $K_n^{(h)}$ has $\binom{n}{h}$ edges. When h = 2, $K_n^{(2)} = K_n$, the complete graph on n vertices.

A decomposition of a hypergraph \mathcal{H} is a set $\mathcal{F} = \{\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_k\}$ of subhypergraphs of \mathcal{H} such that $\mathcal{E}(\mathcal{F}_1) \cup \mathcal{E}(\mathcal{F}_2) \cup \cdots \cup \mathcal{E}(\mathcal{F}_k) = \mathcal{E}(\mathcal{H})$ and $\mathcal{E}(\mathcal{F}_i) \cap \mathcal{E}(\mathcal{F}_j) = \emptyset$ for all $i, j \in \{1, 2, \ldots, k\}$ with $i \neq j$. We denote this by $\mathcal{H} = \mathcal{F}_1 \oplus \mathcal{F}_2 \oplus \ldots \oplus \mathcal{F}_k$. If $\mathcal{H} = \mathcal{F}_1 \oplus \mathcal{F}_2 \oplus \ldots \oplus \mathcal{F}_k$ is a decomposition such that $\mathcal{F}_1 \cong \mathcal{F}_2 \cong \cdots \cong \mathcal{F}_k \cong \mathcal{G}$, where \mathcal{G} is a fixed hypergraph, then \mathcal{F} is called a \mathcal{G} -decomposition of \mathcal{H} .

 \bigodot 2020 Authors. Creative Commons CC-BY 4.0

A cycle of length t in a hypergraph \mathcal{H} is a sequence of the form $v_1, e_1, v_2, e_2, \ldots, v_t, e_t, v_1$, where v_1, v_2, \ldots, v_t are distinct vertices and e_1, e_2, \ldots, e_t are distinct edges satisfying $v_i, v_{i+1} \in e_i$ for $i \in \{1, 2, \ldots, t-1\}$ and $v_t, v_1 \in e_t$.

Decompositions of $K_n^{(3)}$ into Hamilton cycles were considered in [2,3] and the proof of their existence was given in [10]. Decompositions of $K_n^{(h)}$ into Hamilton cycles were considered in [6,8], a complete solution for $h \ge 4$ and $n \ge 30$ was given in [6], and cyclic decompositions were considered in [8]. In [4], necessary and sufficient conditions were given for a \mathcal{G} -decomposition of $K_n^{(3)}$, where \mathcal{G} is any 3-uniform hypergraph with at most three edges and at most six vertices. In [5], decompositions of $K_n^{(3)}$ into 4-cycles were considered and their existence were established. In [7], decompositions of $K_n^{(3)}$ into 6-cycles were considered and their existence was given.

In this paper, we are interested in *p*-cycle decompositions of $K_n^{(3)}$, whenever *p* is prime. A necessary condition for the existence of a *t*-cycle decomposition of $K_n^{(3)}$ is: *t* divides the number of edges in $K_n^{(3)}$, that is, $t|\binom{n}{3}$.

The main result of the paper is as follows:

Theorem 1.1. If $t \ge 5$ is an odd integer, $t \equiv 1 \text{ or } 5 \pmod{6}$ and $n \equiv 0, 1 \text{ or } 2 \pmod{t}$, then $K_n^{(3)}$ has a t-cycle decomposition.

Corollary 1.2. If $p \ge 5$ is prime, then $K_n^{(3)}$ has a p-cycle decomposition if and only if $n \equiv 0, 1 \text{ or } 2 \pmod{p}$.

2. TOOLS

We will assume the vertex set of $K_n^{(3)}$ as $\{v_i : i \in \mathbb{Z}_n\}$, where \mathbb{Z}_n is the set of integers modulo n. For non-negative integers i and j with i < j, we denote the set $\{v_i, v_{i+1}, \ldots, v_j\}$ by $[v_i, v_j]$, and the set $\{i, i+1, \ldots, j\}$ by [i, j].

For convenience, we will often write the edge $\{v_a, v_b, v_c\}$ as $v_a - v_b - v_c$ and the *t*-cycle $v_1, e_1, v_2, e_2, \ldots, v_t, e_t, v_1$ as $(v_1 - y_1 - v_2, v_2 - y_2 - v_3, \ldots, v_t - y_t - v_1)$, where $e_i = v_i - y_i - v_{i+1}$ for $i \in \{1, 2, \ldots, t-1\}$ and $e_t = v_t - y_t - v_1$.

2.1. THE HYPERGRAPH $K_{m,n}^{(3)}$

Define the 3-uniform hypergraph $K_{m,n}^{(3)}$ of order m + n as follows. Let

$$V(K_{m,n}^{(3)}) = \{v_i : i \in \mathbb{Z}_{m+n}\}\$$

grouped as $G_0 = [v_0, v_{m-1}]$ and $G_1 = [v_m, v_{m+n-1}]$. Let $\mathcal{E}(K_{m,n}^{(3)})$ be the set of all 3-edges $v_a - v_b - v_c$ such that v_a, v_b and v_c are not all from the same group, that is, at least one of $\{v_a, v_b, v_c\}$ is an element of G_0 and at least one of $\{v_a, v_b, v_c\}$ is an element of G_1 . Note that $\mathcal{E}(K_{m,n}^{(3)}) = \frac{mn(m+n-2)}{2}$. A necessary condition for the existence of a *t*-cycle decomposition of $K_{m,n}^{(3)}$ is that 2t|mn(m+n-2).

Lemma 2.1. If $t \ge 5$ is an odd integer, then $K_{1,t}^{(3)}$ decomposes into t-cycles.

Proof. The complete graph K_t with vertex set $[v_1, v_t]$ is Hamilton cycle decomposable. For each Hamilton cycle $(x_1, x_2, \ldots, x_t, x_1)$ in the Hamilton cycle decomposition of K_t ,

 $(v_0 - x_1 - x_2, x_2 - v_0 - x_3, x_3 - v_0 - x_4, \dots, x_{t-1} - v_0 - x_t, x_t - x_1 - v_0)$

is a *t*-cycle in $K_{1,t}^{(3)}$. A collection of all these *t*-cycles yields a decomposition of $K_{1,t}^{(3)}$ into *t*-cycles.

Lemma 2.2. If $t \ge 5$ is an odd integer, then $K_{2,t}^{(3)}$ decomposes into t-cycles.

Proof. The complete graph K_t with vertex set $[v_2, v_{t+1}]$ is Hamilton cycle decomposable. For convenience relabel the vertex v_2 by u_{∞} and the vertices in $[v_3, v_{t+1}]$ by $[u_1, u_{t-1}]$, where the suffixes under u are reduced modulo t - 1 with residues $1, 2, \ldots, t - 1$. Now consider the Hamilton cycle decomposition:

$$\Big\{ C_j := u_\infty u_{1+j} u_{2+j} u_{t-1+j} u_{3+j} u_{t-2+j} u_{4+j} \dots u_{\frac{t+5}{2}+j} u_{\frac{t-1}{2}+j} u_{\frac{t+3}{2}+j} u_{\frac{t+1}{2}+j} u_\infty : \\ j \in \Big[0, \frac{t-3}{2} \Big] \Big\}.$$

The following are collections of t-cycles in $K_{2,t}^{(3)}$ obtained from C_j 's:

$$\begin{split} \Big\{ C_j^0 &:= \big(u_\infty - v_0 - u_{1+j}, u_{1+j} - v_0 - u_{2+j}, u_{2+j} - v_0 - u_{t-1+j}, \\ & u_{t-1+j} - v_0 - u_{3+j}, u_{3+j} - v_0 - u_{t-2+j}, \\ & u_{t-2+j} - v_0 - u_{4+j}, \dots, u_{\frac{t+5}{2}+j} - v_0 - u_{\frac{t-1}{2}+j}, u_{\frac{t-1}{2}+j} - v_0 - u_{\frac{t+3}{2}+j}, \\ & u_{\frac{t+3}{2}+j} - v_0 - u_{\frac{t+1}{2}+j}, u_{\frac{t+1}{2}+j} - v_0 - u_\infty \big) : \quad j \in \Big[0, \frac{t-3}{2} \Big] \Big\}, \end{split}$$

$$\left\{ C_j^1 := (u_{\infty} - v_1 - u_{1+j}, u_{1+j} - v_1 - u_{2+j}, u_{2+j} - v_1 - u_{t-1+j}, \\ u_{t-1+j} - v_1 - u_{3+j}, u_{3+j} - v_1 - u_{t-2+j}, u_{t-2+j} - v_1 - u_{4+j}, \dots, \\ u_{\frac{t+5}{2}+j} - v_1 - u_{\frac{t-1}{2}+j}, u_{\frac{t-1}{2}+j} - v_1 - u_{\frac{t+3}{2}+j}, \\ u_{\frac{t+3}{2}+j} - v_1 - u_{\frac{t+1}{2}+j}, u_{\frac{t+1}{2}+j} - v_1 - u_{\infty}) : \quad j \in \left[0, \frac{t-3}{2}\right] \right\}.$$

We obtain $C_j^{0'}$ from C_j^0 by replacing the edge $u_{1+j} - v_0 - u_{2+j}$ by $u_{1+j} - v_0 - v_1$; i.e.,

$$\left\{ C_j^{0'} := (u_{\infty} - v_0 - u_{1+j}, u_{1+j} - v_1 - v_0, v_0 - u_{2+j} - u_{t-1+j}, \\ u_{t-1+j} - v_0 - u_{3+j}, u_{3+j} - v_0 - u_{t-2+j}, u_{t-2+j} - v_0 - u_{4+j}, \dots, \\ u_{\frac{t+5}{2}+j} - v_0 - u_{\frac{t-1}{2}+j}, u_{\frac{t-1}{2}+j} - v_0 - u_{\frac{t+3}{2}+j}, \\ u_{\frac{t+3}{2}+j} - v_0 - u_{\frac{t+1}{2}+j}, u_{\frac{t+1}{2}+j} - v_0 - u_{\infty}) : \quad j \in \left[0, \frac{t-3}{2}\right] \right\}.$$

We obtain $C_j^{1'}$ from C_j^1 by replacing the edge $u_{\frac{t+3}{2}+j} - v_1 - u_{\frac{t+1}{2}+j}$ by $v_0 - v_1 - u_{\frac{t+1}{2}+j}$; i.e.,

$$\begin{cases} C_j^{1'} := (u_{\infty} - v_1 - u_{1+j}, u_{1+j} - v_1 - u_{2+j}, u_{2+j} - v_1 - u_{t-1+j}, \\ u_{t-1+j} - v_1 - u_{3+j}, u_{3+j} - v_1 - u_{t-2+j}, u_{t-2+j} - v_1 - u_{4+j}, \dots, \\ u_{\frac{t+5}{2}+j} - v_1 - u_{\frac{t-1}{2}+j}, u_{\frac{t-1}{2}+j} - u_{\frac{t+3}{2}+j} - v_1, \\ v_1 - v_0 - u_{\frac{t+1}{2}+j}, u_{\frac{t+1}{2}+j} - v_1 - u_{\infty}) : \quad j \in \left[0, \frac{t-3}{2}\right] \end{cases}.$$

Observe that

$$\left\{ C_{j}^{0^{'}},\ C_{j}^{1^{'}}\ :\ j\in \left[0,\frac{t-3}{2}\right]\right\}$$

forms a collection of t-1 edge-disjoint t-cycles in $K_{2,t}^{(3)}$. The edges of $K_{2,t}^{(3)}$ not in these t-cycles are

$$\left\{u_{1+j}-v_0-u_{2+j}, \ u_{\frac{t+3}{2}+j}-v_1-u_{\frac{t+1}{2}+j} \ : \ j\in[0,\frac{t-3}{2}]\right\}\cup\{v_0-v_1-u_\infty\}.$$

These edges form the *t*-cycle

$$\begin{aligned} &(v_1 - u_{\infty} - v_0, v_0 - u_1 - u_2, u_2 - v_0 - u_3, u_3 - v_0 - u_4, u_4 - v_0 - u_5, \dots, \\ &u_{\frac{t-1}{2}} - v_0 - u_{\frac{t+1}{2}}, u_{\frac{t+1}{2}} - v_1 - u_{\frac{t+3}{2}}, u_{\frac{t+3}{2}} - v_1 - u_{\frac{t+5}{2}}, u_{\frac{t+5}{2}} - v_1 - u_{\frac{t+7}{2}}, \dots, \\ &u_{t-2} - v_1 - u_{t-1}, u_{t-1} - u_1 - v_1) \quad \text{in} \ K_{2,t}^{(3)}. \end{aligned}$$

This completes the proof.

Lemma 2.3. If $t \ge 5$ is an odd integer, then $K_{t,t}^{(3)}$ decomposes into t-cycles.

Proof. The complete graph K_t is Hamilton cycle decomposable. Let \mathcal{F}_0 and \mathcal{F}_1 be decompositions of K_t into t-cycles with vertex sets $[v_0, v_{t-1}]$ and $[v_t, v_{2t-1}]$, respectively. For each t-cycle $(x_1, x_2, \ldots, x_t, x_1)$ of \mathcal{F}_0 , construct t edge-disjoint t-cycles

$$(x_1 - v_i - x_2, x_2 - v_i - x_3, x_3 - v_i - x_4, \dots, x_{t-1} - v_i - x_t, x_t - v_i - x_1),$$

where $v_i \in [v_t, v_{2t-1}]$ and for each t-cycle $(y_1, y_2, \ldots, y_t, y_1)$ of \mathcal{F}_1 , construct t edge-disjoint t-cycles

$$(y_1 - v_j - y_2, y_2 - v_j - y_3, y_3 - v_j - y_4, \dots, y_{t-1} - v_j - y_t, y_t - v_j - y_1),$$

where $v_j \in [v_0, v_{t-1}]$. Collection of these *t*-cycles yield a decomposition of $K_{t,t}^{(3)}$ into *t*-cycles.

2.2. THE HYPERGRAPH $Z_{p,q,r}^{(3)}$

Define the 3-uniform hypergraph $Z_{p,q,r}^{(3)}$ of order p + q + r as follows:

$$V(Z_{p,q,r}^{(3)}) = \{v_i : i \in \mathbb{Z}_{p+q+r}\}$$

grouped as $G_0 = [v_0, v_{p-1}]$, $G_1 = [v_p, v_{p+q-1}]$ and $G_2 = [v_{p+q}, v_{p+q+r-1}]$ and let $\mathcal{E}(Z_{p,q,r}^{(3)})$ be the set of all 3-edges $v_a - v_b - v_c$ such that $a \in [0, p-1]$, $b \in [p, p+q-1]$ and $c \in [p+q, p+q+r-1]$. Note that $|\mathcal{E}(Z_{p,q,r}^{(3)})| = pqr$. A necessary condition for the existence of a *t*-cycle decomposition of $Z_{p,q,r}^{(3)}$ is that t|pqr.

Lemma 2.4. If $t \ge 5$ is an odd integer, then $Z_{t,t,r}^{(3)}$ decomposes into t-cycles.

To prove this lemma, we need the following theorem.

Theorem 2.5 ([9]). If m is odd and k divides m, then the complete bipartite graph $K_{m,m}$ has a decomposition into paths of length k.

Proof of Lemma 2.4. By Theorem 2.5, the complete bipartite graph $K_{t,t}$ with bipartition $([v_0, v_{t-1}], [v_t, v_{2t-1}])$ has a decomposition \mathcal{F} into paths of length t. For each path $(x_1, x_2, \ldots, x_t, x_{t+1})$ of length t in \mathcal{F} , construct r edge-disjoint t-cycles

$$(v_i - x_1 - x_2, x_2 - v_i - x_3, x_3 - v_i - x_4, x_4 - v_i - x_5, \dots, x_{t-1} - v_i - x_t, x_t - x_{t+1} - v_i),$$

where $v_i \in [v_{2t}, v_{2t+r-1}]$. This collection of *t*-cycles yield a decomposition of $Z_{t,t,r}^{(3)}$ into *t*-cycles.

Corollary 2.6. If $t \ge 5$ is an odd integer, then $Z_{t,t,t}^{(3)}$ decomposes into t-cycles.

Corollary 2.7. If $t \ge 5$ is an odd integer, then $Z_{t,t,1}^{(3)}$ decomposes into t-cycles.

3. PROOF OF THE MAIN RESULT

We need the following definition and theorem. A Hamilton cycle of a hypergraph \mathcal{H} on n vertices is a cycle of length n.

Theorem 3.1 ([2,3,10]). If $n \equiv 1, 2, 4 \text{ or } 5 \pmod{6}$, then $K_n^{(3)}$ decomposes into Hamilton cycles.

Decomposition of $K_{t+1}^{(3)}$ from that of $K_t^{(3)}$

Lemma 3.2. If $t \ge 5$ is an odd integer and $t \equiv 1 \text{ or } 5 \pmod{6}$, then $K_{t+1}^{(3)}$ decomposes into t-cycles.

Proof. By Theorem 3.1 and Lemma 2.1, $K_t^{(3)}$ and $K_{1,t}^{(3)}$ are, respectively, *t*-cycle decomposable and so is $K_{t+1}^{(3)} = K_t^{(3)} \oplus K_{1,t}^{(3)}$, where $V(K_t^{(3)}) = [v_1, v_t]$ and $V(K_{1,t}^{(3)}) = G_0 \cup G_1, G_0 = \{v_0\}, G_1 = [v_1, v_t]$.

Decomposition of $K_{t+2}^{(3)}$ from that of $K_t^{(3)}$

Lemma 3.3. If $t \ge 5$ is an odd integer and $t \equiv 1 \text{ or } 5 \pmod{6}$, then $K_{t+2}^{(3)}$ decomposes into t-cycles.

Proof. By Theorem 3.1 and Lemma 2.2, $K_t^{(3)}$ and $K_{2,t}^{(3)}$ are, respectively, *t*-cycle decomposable and so is $K_{t+2}^{(3)} = K_t^{(3)} \oplus K_{2,t}^{(3)}$, where $V(K_t^{(3)}) = [v_2, v_{t+1}]$ and $V(K_{2,t}^{(3)}) = G_0 \cup G_1, G_0 = [v_0, v_1], G_1 = [v_2, v_{t+1}].$

Proof of Theorem 1.1. Case 1. $n \equiv 0 \pmod{t}$

Then n = kt for some positive integer k. We may think of $K_{kt}^{(3)}$ as an edge-disjoint union of k copies of $K_t^{(3)}$, $\frac{k(k-1)}{2}$ copies of $K_{t,t}^{(3)}$ and $\frac{k(k-1)(k-2)}{6}$ copies of $Z_{t,t,t}^{(3)}$. That is,

$$K_{kt}^{(3)} = \underbrace{K_t^{(3)} \oplus K_t^{(3)} \oplus \dots \oplus K_t^{(3)}}_{k \ times} \oplus \underbrace{K_{t,t}^{(3)} \oplus K_{t,t}^{(3)} \oplus \dots \oplus K_{t,t}^{(3)}}_{\frac{k(k-1)}{2} \ times} \oplus \underbrace{Z_{t,t,t}^{(3)} \oplus Z_{t,t,t}^{(3)} \oplus \dots \oplus Z_{t,t,t}^{(3)}}_{6},$$

where $V(K_t^{(3)})$, disjoint sets G_0 and G_1 of $K_{t,t}^{(3)}$, and pairwise disjoint sets G_0 , G_1 and G_2 of $Z_{t,t,t}^{(3)}$ are in $\{[v_0, v_{t-1}], [v_t, v_{2t-1}], [v_{2t}, v_{3t-1}], \ldots, [v_{(k-1)t}, v_{kt-1}]\}$. As each of the hypergraphs $K_t^{(3)}$, $K_{t,t}^{(3)}$ and $Z_{t,t,t}^{(3)}$ is decomposable into t-cycles by Theorem 3.1, Lemma 2.3 and Corollary 2.6, respectively, we have the required decomposition.

Case 2. $n \equiv 1 \pmod{t}$

Then n = kt + 1 for some positive integer k. We may think of $K_{kt+1}^{(3)}$ as k copies of $K_{t+1}^{(3)}$, $\frac{k(k-1)}{2}$ copies of $K_{t,t}^{(3)}$, $\frac{k(k-1)(k-2)}{6}$ copies of $Z_{t,t,t}^{(3)}$ and $\frac{k(k-1)}{2}$ copies of $Z_{t,t,1}^{(3)}$. That is,

$$K_{kt+1}^{(3)} = \underbrace{K_{t+1}^{(3)} \oplus K_{t+1}^{(3)} \oplus \dots \oplus K_{t+1}^{(3)}}_{k \ times} \oplus \underbrace{K_{t,t}^{(3)} \oplus K_{t,t}^{(3)} \oplus \dots \oplus K_{t,t}^{(3)}}_{\underbrace{k(k-1)}{2} \ times} \oplus \underbrace{Z_{t,t,t}^{(3)} \oplus Z_{t,t,t}^{(3)} \oplus \dots \oplus Z_{t,t,t}^{(3)}}_{\frac{k(k-1)(k-2)}{6} \ times} \oplus \underbrace{Z_{t,t,1}^{(3)} \oplus Z_{t,t,1}^{(3)} \oplus \dots \oplus Z_{t,t,1}^{(3)}}_{\frac{k(k-1)}{2} \ times},$$

where

$$V(K_{t+1}^{(3)}) \in \{ [v_0, v_{t-1}] \cup \{v_{kt}\}, [v_t, v_{2t-1}] \cup \{v_{kt}\}, [v_{2t}, v_{3t-1}] \cup \{v_{kt}\}, \dots, [v_{(k-1)t}, v_{kt-1}] \cup \{v_{kt}\} \};$$

disjoint sets G_0 and G_1 of $K_{t,t}^{(3)}$, pairwise disjoint sets G_0 , G_1 and G_2 of $Z_{t,t,t}^{(3)}$, and disjoint sets G_0 and G_1 of $Z_{t,t,1}^{(3)}$ are in $\{[v_0, v_{t-1}], [v_t, v_{2t-1}], [v_{2t}, v_{3t-1}], \ldots, [v_{(k-1)t}, v_{kt-1}]\}$; and the set G_2 of $Z_{t,t,1}^{(3)}$ is $\{v_{kt}\}$. As each of the hypergraphs $K_{t+1}^{(3)}$, $K_{t,t}^{(3)}$, $Z_{t,t,t}^{(3)}$ and $Z_{t,t,1}^{(3)}$ is decomposable into t-cycles by Lemma 3.2, Lemma 2.3, Corollary 2.6 and Corollary 2.7, respectively, we have the required decomposition. Case 3. $n \equiv 2 \pmod{t}$

Then n = kt + 2 for some positive integer k. We may think of $K_{kt+2}^{(3)}$ as k copies of $K_{t+2}^{(3)}$, $\frac{k(k-1)}{2}$ copies of $K_{t,t}^{(3)}$, $\frac{k(k-1)(k-2)}{6}$ copies of $Z_{t,t,t}^{(3)}$ and k(k-1) copies of $Z_{t,t,1}^{(3)}$. That is,

$$K_{kt+2}^{(3)} = \underbrace{K_{t+2}^{(3)} \oplus K_{t+2}^{(3)} \oplus \cdots \oplus K_{t+2}^{(3)}}_{k \ times} \oplus \underbrace{K_{t,t}^{(3)} \oplus K_{t,t}^{(3)} \oplus \cdots \oplus K_{t,t}^{(3)}}_{\frac{k(k-1)}{2} \ times} \oplus \underbrace{Z_{t,t,t}^{(3)} \oplus Z_{t,t,t}^{(3)} \oplus \cdots \oplus Z_{t,t,t}^{(3)}}_{\frac{k(k-1)(k-2)}{6} \ times} \oplus \underbrace{Z_{t,t,1}^{(3)} \oplus Z_{t,t,1}^{(3)} \oplus \cdots \oplus Z_{t,t,1}^{(3)}}_{\frac{k(k-1)}{2} \ times} \oplus \underbrace{Z_{t,t,1}^{(3)} \oplus Z_{t,t,1}^{(3)} \oplus \cdots \oplus Z_{t,t,1}^{(3)}}_{\frac{k(k-1)}{2} \ times}$$

where

 $V(K_{t+2}^{(3)}) \in \{ [v_0, v_{t-1}] \cup \{ v_{kt}, v_{kt+1} \}, [v_t, v_{2t-1}] \cup \{ v_{kt}, v_{kt+1} \}, [v_{2t}, v_{3t-1}] \cup \{ v_{kt}, v_{kt+1} \}, \dots, [v_{(k-1)t}, v_{kt-1}] \cup \{ v_{kt}, v_{kt+1} \} \};$

disjoint sets G_0 and G_1 of $K_{t,t}^{(3)}$, pairwise disjoint sets G_0 , G_1 and G_2 of $Z_{t,t,t}^{(3)}$, and disjoint sets G_0 and G_1 of $Z_{t,t,1}^{(3)}$ are in $\{[v_0, v_{t-1}], [v_t, v_{2t-1}], [v_{2t}, v_{3t-1}], \ldots, [v_{(k-1)t}, v_{kt-1}]\}$; the set G_2 of the first $\frac{k(k-1)}{2}$ copies $Z_{t,t,1}^{(3)}$ is $\{v_{kt}\}$; and the set G_2 of the last $\frac{k(k-1)}{2}$ copies $Z_{t,t,1}^{(3)}$ is $\{v_{kt+1}\}$. As each of the hypergraphs $K_{t+2}^{(3)}, K_{t,t}^{(3)}, Z_{t,t,t}^{(3)}$ and $Z_{t,t,1}^{(3)}$ is decomposable into t-cycles by Lemma 3.3, Lemma 2.3, Corollary 2.6 and Corollary 2.7, respectively, we have the required decomposition.

Proof of Corollary 1.1. Follows from: (i) $p \ge 5$ is prime and $p \mid \binom{n}{3}$ implies $n \equiv 0, 1$ or 2 (mod p), (ii) p is prime implies $p \equiv 1$ or 5 (mod 6), and (iii) Theorem 1.1. \Box

REFERENCES

- [1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1979.
- J.C. Bermond, Hamiltonian decompositions of graphs, directed graphs and hypergraphs, Ann. Discrete Math. 3 (1978), 21–28.
- J.C. Bermond, A. Germa, M.C. Heydemann, D. Sotteau, Hypergraphes hamiltoniens,
 [in:] Problémes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, 39–43.
- [4] D. Bryant, S. Herke, B. Maenhaut, W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs, Australas. J. Combin. 60 (2014) 2, 227–254.
- [5] H. Jordon, G. Newkirk, 4-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin. 71 (2018) 2, 312–323.

- [6] D. Kühn, D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, J. Combin. Theory Ser. A 126 (2014), 128–135.
- [7] R. Lakshmi, T. Poovaragavan, 6-Cycle decompositions of complete 3-uniform hypergraphs, (submitted).
- [8] P. Petecki, On cyclic hamiltonian decompositions of complete k-uniform hypergraphs, Discrete Math. 325 (2014), 74–76.
- [9] M. Truszczyński, Note on the decomposition of $\lambda K_{m,n}$ ($\lambda K_{m,n}^*$) into paths, Discrete Math. 55 (1985), 89–96.
- [10] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, Discrete Math. 132 (1994), 333–348.

R. Lakshmi (corresponding author) mathlakshmi@gmail.com bhttps://orcid.org/0000-0001-9633-7676

Annamalai University Department of Mathematics Annamalainagar-608 002, India

Dharumapuram Gnanambigai Government Arts College for Women Department of Mathematics Mayiladuthurai-609 001, India

T. Poovaragavan poovamath@gmail.com https://orcid.org/0000-0002-4315-1621

Annamalai University Department of Mathematics Annamalainagar-608 002, India

Received: January 12, 2020. Accepted: June 5, 2020.