DECOMPOSITIONS OF COMPLETE 3-UNIFORM HYPERGRAPHS INTO CYCLES OF CONSTANT PRIME LENGTH

R. Lakshmi and T. Poovaragavan
Communicated by Andrzej Żak

Abstract

A complete 3-uniform hypergraph of order n has vertex set V with $|V|=n$ and the set of all 3 -subsets of V as its edge set. A t-cycle in this hypergraph is $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{t}, e_{t}, v_{1}$ where $v_{1}, v_{2}, \ldots, v_{t}$ are distinct vertices and $e_{1}, e_{2}, \ldots, e_{t}$ are distinct edges such that $v_{i}, v_{i+1} \in e_{i}$ for $i \in\{1,2, \ldots, t-1\}$ and $v_{t}, v_{1} \in e_{t}$. A decomposition of a hypergraph is a partition of its edge set into edge-disjoint subsets. In this paper, we give necessary and sufficient conditions for a decomposition of the complete 3-uniform hypergraph of order n into p-cycles, whenever p is prime.

Keywords: uniform hypergraph, cycle decomposition.

Mathematics Subject Classification: 05C65, 05C85.

1. INTRODUCTION

A hypergraph \mathcal{H} consists of a finite nonempty set V of vertices and a set $\mathcal{E}=$ $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of $e d g e s$ where each $e_{i} \subseteq V$ with $\left|e_{i}\right|>0$ for $i \in\{1,2, \ldots, m\}$. If $\left|e_{i}\right|=h$, then we call e_{i} an h-edge. If every edge of \mathcal{H} is an h-edge for some h, then we say that \mathcal{H} is h-uniform. The complete h-uniform hypergraph $K_{n}^{(h)}$ is the hypergraph with vertex set V, where $|V|=n$, in which every h-subset of V determines an h-edge. It then follows that $K_{n}^{(h)}$ has $\binom{n}{h}$ edges. When $h=2, K_{n}^{(2)}=K_{n}$, the complete graph on n vertices.

A decomposition of a hypergraph \mathcal{H} is a set $\mathcal{F}=\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{k}\right\}$ of subhypergraphs of \mathcal{H} such that $\mathcal{E}\left(\mathcal{F}_{1}\right) \cup \mathcal{E}\left(\mathcal{F}_{2}\right) \cup \cdots \cup \mathcal{E}\left(\mathcal{F}_{k}\right)=\mathcal{E}(\mathcal{H})$ and $\mathcal{E}\left(\mathcal{F}_{i}\right) \cap \mathcal{E}\left(\mathcal{F}_{j}\right)=\emptyset$ for all $i, j \in\{1,2, \ldots, k\}$ with $i \neq j$. We denote this by $\mathcal{H}=\mathcal{F}_{1} \oplus \mathcal{F}_{2} \oplus \ldots \oplus \mathcal{F}_{k}$. If $\mathcal{H}=\mathcal{F}_{1} \oplus \mathcal{F}_{2} \oplus \ldots \oplus \mathcal{F}_{k}$ is a decomposition such that $\mathcal{F}_{1} \cong \mathcal{F}_{2} \cong \ldots \cong \mathcal{F}_{k} \cong \mathcal{G}$, where \mathcal{G} is a fixed hypergraph, then \mathcal{F} is called a \mathcal{G}-decomposition of \mathcal{H}.

A cycle of length t in a hypergraph \mathcal{H} is a sequence of the form $v_{1}, e_{1}, v_{2}, e_{2}$, $\ldots, v_{t}, e_{t}, v_{1}$, where $v_{1}, v_{2}, \ldots, v_{t}$ are distinct vertices and $e_{1}, e_{2}, \ldots, e_{t}$ are distinct edges satisfying $v_{i}, v_{i+1} \in e_{i}$ for $i \in\{1,2, \ldots, t-1\}$ and $v_{t}, v_{1} \in e_{t}$.

Decompositions of $K_{n}^{(3)}$ into Hamilton cycles were considered in [2,3] and the proof of their existence was given in [10]. Decompositions of $K_{n}^{(h)}$ into Hamilton cycles were considered in [6, 8], a complete solution for $h \geq 4$ and $n \geq 30$ was given in [6], and cyclic decompositions were considered in [8]. In [4], necessary and sufficient conditions were given for a \mathcal{G}-decomposition of $K_{n}^{(3)}$, where \mathcal{G} is any 3-uniform hypergraph with at most three edges and at most six vertices. In [5], decompositions of $K_{n}^{(3)}$ into 4-cycles were considered and their existence were established. In [7], decompositions of $K_{n}^{(3)}$ into 6 -cycles were considered and their existence was given.

In this paper, we are interested in p-cycle decompositions of $K_{n}^{(3)}$, whenever p is prime. A necessary condition for the existence of a t-cycle decomposition of $K_{n}^{(3)}$ is: t divides the number of edges in $K_{n}^{(3)}$, that is, $t \left\lvert\,\binom{ n}{3}\right.$.

The main result of the paper is as follows:
Theorem 1.1. If $t \geq 5$ is an odd integer, $t \equiv 1$ or $5(\bmod 6)$ and $n \equiv 0,1$ or 2 $(\bmod t)$, then $K_{n}^{(3)}$ has a t-cycle decomposition.

Corollary 1.2. If $p \geq 5$ is prime, then $K_{n}^{(3)}$ has a p-cycle decomposition if and only if $n \equiv 0,1$ or $2(\bmod p)$.

2. TOOLS

We will assume the vertex set of $K_{n}^{(3)}$ as $\left\{v_{i}: i \in \mathbb{Z}_{n}\right\}$, where \mathbb{Z}_{n} is the set of integers modulo n. For non-negative integers i and j with $i<j$, we denote the set $\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}$ by $\left[v_{i}, v_{j}\right]$, and the set $\{i, i+1, \ldots, j\}$ by $[i, j]$.

For convenience, we will often write the edge $\left\{v_{a}, v_{b}, v_{c}\right\}$ as $v_{a}-v_{b}-v_{c}$ and the t-cycle $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{t}, e_{t}, v_{1}$ as $\left(v_{1}-y_{1}-v_{2}, v_{2}-y_{2}-v_{3}, \ldots, v_{t}-y_{t}-v_{1}\right)$, where $e_{i}=v_{i}-y_{i}-v_{i+1}$ for $i \in\{1,2, \ldots, t-1\}$ and $e_{t}=v_{t}-y_{t}-v_{1}$.

2.1. THE HYPERGRAPH $K_{m, n}^{(3)}$

Define the 3-uniform hypergraph $K_{m, n}^{(3)}$ of order $m+n$ as follows. Let

$$
V\left(K_{m, n}^{(3)}\right)=\left\{v_{i}: i \in \mathbb{Z}_{m+n}\right\}
$$

grouped as $G_{0}=\left[v_{0}, v_{m-1}\right]$ and $G_{1}=\left[v_{m}, v_{m+n-1}\right]$. Let $\mathcal{E}\left(K_{m, n}^{(3)}\right)$ be the set of all 3 -edges $v_{a}-v_{b}-v_{c}$ such that v_{a}, v_{b} and v_{c} are not all from the same group, that is, at least one of $\left\{v_{a}, v_{b}, v_{c}\right\}$ is an element of G_{0} and at least one of $\left\{v_{a}, v_{b}, v_{c}\right\}$ is an element of G_{1}. Note that $\mathcal{E}\left(K_{m, n}^{(3)}\right) \left\lvert\,=\frac{m n(m+n-2)}{2}\right.$. A necessary condition for the existence of a t-cycle decomposition of $K_{m, n}^{(3)}$ is that $2 t \mid m n(m+n-2)$.

Lemma 2.1. If $t \geq 5$ is an odd integer, then $K_{1, t}^{(3)}$ decomposes into t-cycles.
Proof. The complete graph K_{t} with vertex set $\left[v_{1}, v_{t}\right]$ is Hamilton cycle decomposable. For each Hamilton cycle $\left(x_{1}, x_{2}, \ldots, x_{t}, x_{1}\right)$ in the Hamilton cycle decomposition of K_{t},

$$
\left(v_{0}-x_{1}-x_{2}, x_{2}-v_{0}-x_{3}, x_{3}-v_{0}-x_{4}, \ldots, x_{t-1}-v_{0}-x_{t}, x_{t}-x_{1}-v_{0}\right)
$$

is a t-cycle in $K_{1, t}^{(3)}$. A collection of all these t-cycles yields a decomposition of $K_{1, t}^{(3)}$ into t-cycles.

Lemma 2.2. If $t \geq 5$ is an odd integer, then $K_{2, t}^{(3)}$ decomposes into t-cycles.
Proof. The complete graph K_{t} with vertex set $\left[v_{2}, v_{t+1}\right]$ is Hamilton cycle decomposable. For convenience relabel the vertex v_{2} by u_{∞} and the vertices in $\left[v_{3}, v_{t+1}\right]$ by $\left[u_{1}, u_{t-1}\right]$, where the suffixes under u are reduced modulo $t-1$ with residues $1,2, \ldots, t-1$. Now consider the Hamilton cycle decomposition:

$$
\left.\begin{array}{rl}
\left\{C_{j}\right. & :=u_{\infty} u_{1+j} u_{2+j} u_{t-1+j} u_{3+j} u_{t-2+j} u_{4+j} \ldots u_{\frac{t+5}{2}+j} u_{\frac{t-1}{2}+j} u_{\frac{t+3}{2}+j} u_{\frac{t+1}{2}+j} u_{\infty}: \\
& j
\end{array}:\left[0, \frac{t-3}{2}\right]\right\} .
$$

The following are collections of t-cycles in $K_{2, t}^{(3)}$ obtained from C_{j} 's:

$$
\begin{aligned}
\left\{C_{j}^{0}:=\right. & \left(u_{\infty}-v_{0}-u_{1+j}, u_{1+j}-v_{0}-u_{2+j}, u_{2+j}-v_{0}-u_{t-1+j},\right. \\
& u_{t-1+j}-v_{0}-u_{3+j}, u_{3+j}-v_{0}-u_{t-2+j}, \\
& u_{t-2+j}-v_{0}-u_{4+j}, \ldots, u_{\frac{t+5}{2}+j}-v_{0}-u_{\frac{t-1}{2}+j}, u_{\frac{t-1}{2}+j}-v_{0}-u_{\frac{t+3}{2}+j}, \\
& \left.\left.u_{\frac{t+3}{2}+j}-v_{0}-u_{\frac{t+1}{2}+j}, u_{\frac{t+1}{2}+j}-v_{0}-u_{\infty}\right): \quad j \in\left[0, \frac{t-3}{2}\right]\right\}, \\
\left\{C_{j}^{1}:=\right. & \left(u_{\infty}-v_{1}-u_{1+j}, u_{1+j}-v_{1}-u_{2+j}, u_{2+j}-v_{1}-u_{t-1+j},\right. \\
& u_{t-1+j}-v_{1}-u_{3+j}, u_{3+j}-v_{1}-u_{t-2+j}, u_{t-2+j}-v_{1}-u_{4+j}, \ldots, \\
& u_{\frac{t+5}{2}+j}-v_{1}-u_{\frac{t-1}{2}+j}, u_{\frac{t-1}{2}+j}-v_{1}-u_{\frac{t+3}{2}+j}, \\
& \left.\left.u_{\frac{t+3}{2}+j}-v_{1}-u_{\frac{t+1}{2}+j}, u_{\frac{t+1}{2}+j}-v_{1}-u_{\infty}\right): \quad j \in\left[0, \frac{t-3}{2}\right]\right\} .
\end{aligned}
$$

We obtain $C_{j}^{0^{\prime}}$ from C_{j}^{0} by replacing the edge $u_{1+j}-v_{0}-u_{2+j}$ by $u_{1+j}-v_{0}-v_{1}$; i.e.,

$$
\begin{aligned}
\left\{C_{j}^{0^{\prime}}:=\right. & \left(u_{\infty}-v_{0}-u_{1+j}, u_{1+j}-v_{1}-v_{0}, v_{0}-u_{2+j}-u_{t-1+j},\right. \\
& u_{t-1+j}-v_{0}-u_{3+j}, u_{3+j}-v_{0}-u_{t-2+j}, u_{t-2+j}-v_{0}-u_{4+j}, \ldots, \\
& u_{\frac{t+5}{2}+j}-v_{0}-u_{\frac{t-1}{2}+j}, u_{\frac{t-1}{2}+j}-v_{0}-u_{\frac{t+3}{2}+j}, \\
& \left.\left.u_{\frac{t+3}{2}+j}-v_{0}-u_{\frac{t+1}{2}+j}, u_{\frac{t+1}{2}+j}-v_{0}-u_{\infty}\right): \quad j \in\left[0, \frac{t-3}{2}\right]\right\} .
\end{aligned}
$$

We obtain $C_{j}^{1^{\prime}}$ from C_{j}^{1} by replacing the edge $u_{\frac{t+3}{2}+j}-v_{1}-u_{\frac{t+1}{2}+j}$ by $v_{0}-v_{1}-u_{\frac{t+1}{2}+j}$; i.e.,

$$
\begin{aligned}
\left\{C_{j}^{1^{\prime}}:=\right. & \left(u_{\infty}-v_{1}-u_{1+j}, u_{1+j}-v_{1}-u_{2+j}, u_{2+j}-v_{1}-u_{t-1+j},\right. \\
& u_{t-1+j}-v_{1}-u_{3+j}, u_{3+j}-v_{1}-u_{t-2+j}, u_{t-2+j}-v_{1}-u_{4+j}, \ldots, \\
& u_{\frac{t+5}{2}+j}-v_{1}-u_{\frac{t-1}{2}+j}, u_{\frac{t-1}{2}+j}-u_{\frac{t+3}{2}+j}-v_{1}, \\
& \left.\left.v_{1}-v_{0}-u_{\frac{t+1}{2}+j}, u_{\frac{t+1}{2}+j}-v_{1}-u_{\infty}\right): \quad j \in\left[0, \frac{t-3}{2}\right]\right\} .
\end{aligned}
$$

Observe that

$$
\left\{C_{j}^{0^{\prime}}, C_{j}^{1^{\prime}}: j \in\left[0, \frac{t-3}{2}\right]\right\}
$$

forms a collection of $t-1$ edge-disjoint t-cycles in $K_{2, t}^{(3)}$. The edges of $K_{2, t}^{(3)}$ not in these t-cycles are

$$
\left\{u_{1+j}-v_{0}-u_{2+j}, u_{\frac{t+3}{2}+j}-v_{1}-u_{\frac{t+1}{2}+j}: j \in\left[0, \frac{t-3}{2}\right]\right\} \cup\left\{v_{0}-v_{1}-u_{\infty}\right\}
$$

These edges form the t-cycle

$$
\begin{aligned}
& \left(v_{1}-u_{\infty}-v_{0}, v_{0}-u_{1}-u_{2}, u_{2}-v_{0}-u_{3}, u_{3}-v_{0}-u_{4}, u_{4}-v_{0}-u_{5}, \ldots,\right. \\
& u_{\frac{t-1}{2}}-v_{0}-u_{\frac{t+1}{2}}, u_{\frac{t+1}{2}}-v_{1}-u_{\frac{t+3}{2}}, u_{\frac{t+3}{2}}-v_{1}-u_{\frac{t+5}{2}}, u_{\frac{t+5}{2}}-v_{1}-u_{\frac{t+7}{2}}, \ldots, \\
& \left.u_{t-2}-v_{1}-u_{t-1}, u_{t-1}-u_{1}-v_{1}\right) \quad \text { in } K_{2, t}^{(3)}
\end{aligned}
$$

This completes the proof.
Lemma 2.3. If $t \geq 5$ is an odd integer, then $K_{t, t}^{(3)}$ decomposes into t-cycles.
Proof. The complete graph K_{t} is Hamilton cycle decomposable. Let \mathcal{F}_{0} and \mathcal{F}_{1} be decompositions of K_{t} into t-cycles with vertex sets $\left[v_{0}, v_{t-1}\right]$ and $\left[v_{t}, v_{2 t-1}\right]$, respectively. For each t-cycle $\left(x_{1}, x_{2}, \ldots, x_{t}, x_{1}\right)$ of \mathcal{F}_{0}, construct t edge-disjoint t-cycles

$$
\left(x_{1}-v_{i}-x_{2}, x_{2}-v_{i}-x_{3}, x_{3}-v_{i}-x_{4}, \ldots, x_{t-1}-v_{i}-x_{t}, x_{t}-v_{i}-x_{1}\right)
$$

where $v_{i} \in\left[v_{t}, v_{2 t-1}\right]$ and for each t-cycle $\left(y_{1}, y_{2}, \ldots, y_{t}, y_{1}\right)$ of \mathcal{F}_{1}, construct t edge-disjoint t-cycles

$$
\left(y_{1}-v_{j}-y_{2}, y_{2}-v_{j}-y_{3}, y_{3}-v_{j}-y_{4}, \ldots, y_{t-1}-v_{j}-y_{t}, y_{t}-v_{j}-y_{1}\right),
$$

where $v_{j} \in\left[v_{0}, v_{t-1}\right]$. Collection of these t-cycles yield a decomposition of $K_{t, t}^{(3)}$ into t-cycles.

2.2. THE HYPERGRAPH $Z_{p, q, r}^{(3)}$

Define the 3 -uniform hypergraph $Z_{p, q, r}^{(3)}$ of order $p+q+r$ as follows:

$$
V\left(Z_{p, q, r}^{(3)}\right)=\left\{v_{i}: i \in \mathbb{Z}_{p+q+r}\right\}
$$

grouped as $G_{0}=\left[v_{0}, v_{p-1}\right], G_{1}=\left[v_{p}, v_{p+q-1}\right]$ and $G_{2}=\left[v_{p+q}, v_{p+q+r-1}\right]$ and let $\mathcal{E}\left(Z_{p, q, r}^{(3)}\right)$ be the set of all 3-edges $v_{a}-v_{b}-v_{c}$ such that $a \in[0, p-1], b \in[p, p+q-1]$ and $c \in[p+q, p+q+r-1]$. Note that $\left|\mathcal{E}\left(Z_{p, q, r}^{(3)}\right)\right|=p q r$. A necessary condition for the existence of a t-cycle decomposition of $Z_{p, q, r}^{(3)}$ is that $t \mid p q r$.

Lemma 2.4. If $t \geq 5$ is an odd integer, then $Z_{t, t, r}^{(3)}$ decomposes into t-cycles.
To prove this lemma, we need the following theorem.
Theorem 2.5 ([9]). If m is odd and k divides m, then the complete bipartite graph $K_{m, m}$ has a decomposition into paths of length k.

Proof of Lemma 2.4. By Theorem 2.5, the complete bipartite graph $K_{t, t}$ with bipartition $\left(\left[v_{0}, v_{t-1}\right],\left[v_{t}, v_{2 t-1}\right]\right)$ has a decomposition \mathcal{F} into paths of length t. For each path $\left(x_{1}, x_{2}, \ldots, x_{t}, x_{t+1}\right)$ of length t in \mathcal{F}, construct r edge-disjoint t-cycles
$\left(v_{i}-x_{1}-x_{2}, x_{2}-v_{i}-x_{3}, x_{3}-v_{i}-x_{4}, x_{4}-v_{i}-x_{5}, \ldots, x_{t-1}-v_{i}-x_{t}, x_{t}-x_{t+1}-v_{i}\right)$,
where $v_{i} \in\left[v_{2 t}, v_{2 t+r-1}\right]$. This collection of t-cycles yield a decomposition of $Z_{t, t, r}^{(3)}$ into t-cycles.

Corollary 2.6. If $t \geq 5$ is an odd integer, then $Z_{t, t, t}^{(3)}$ decomposes into t-cycles.
Corollary 2.7. If $t \geq 5$ is an odd integer, then $Z_{t, t, 1}^{(3)}$ decomposes into t-cycles.

3. PROOF OF THE MAIN RESULT

We need the following definition and theorem. A Hamilton cycle of a hypergraph \mathcal{H} on n vertices is a cycle of length n.
Theorem $3.1([2,3,10])$. If $n \equiv 1,2,4$ or $5(\bmod 6)$, then $K_{n}^{(3)}$ decomposes into Hamilton cycles.
Decomposition of $K_{t+1}^{(3)}$ from that of $K_{t}^{(3)}$
Lemma 3.2. If $t \geq 5$ is an odd integer and $t \equiv 1$ or $5(\bmod 6)$, then $K_{t+1}^{(3)}$ decomposes into t-cycles.

Proof. By Theorem 3.1 and Lemma 2.1, $K_{t}^{(3)}$ and $K_{1, t}^{(3)}$ are, respectively, t-cycle decomposable and so is $K_{t+1}^{(3)}=K_{t}^{(3)} \oplus K_{1, t}^{(3)}$, where $V\left(K_{t}^{(3)}\right)=\left[v_{1}, v_{t}\right]$ and $V\left(K_{1, t}^{(3)}\right)=$ $G_{0} \cup G_{1}, G_{0}=\left\{v_{0}\right\}, G_{1}=\left[v_{1}, v_{t}\right]$.

Decomposition of $K_{t+2}^{(3)}$ from that of $K_{t}^{(3)}$
Lemma 3.3. If $t \geq 5$ is an odd integer and $t \equiv 1$ or $5(\bmod 6)$, then $K_{t+2}^{(3)}$ decomposes into t-cycles.

Proof. By Theorem 3.1 and Lemma 2.2, $K_{t}^{(3)}$ and $K_{2, t}^{(3)}$ are, respectively, t-cycle decomposable and so is $K_{t+2}^{(3)}=K_{t}^{(3)} \oplus K_{2, t}^{(3)}$, where $V\left(K_{t}^{(3)}\right)=\left[v_{2}, v_{t+1}\right]$ and $V\left(K_{2, t}^{(3)}\right)$ $=G_{0} \cup G_{1}, G_{0}=\left[v_{0}, v_{1}\right], G_{1}=\left[v_{2}, v_{t+1}\right]$.

Proof of Theorem 1.1. Case 1. $n \equiv 0(\bmod t)$

Then $n=k t$ for some positive integer k. We may think of $K_{k t}^{(3)}$ as an edge-disjoint union of k copies of $K_{t}^{(3)}, \frac{k(k-1)}{2}$ copies of $K_{t, t}^{(3)}$ and $\frac{k(k-1)(k-2)}{6}$ copies of $Z_{t, t, t}^{(3)}$. That is,

$$
\begin{aligned}
K_{k t}^{(3)}= & \underbrace{K_{t}^{(3)} \oplus K_{t}^{(3)} \oplus \cdots \oplus K_{t}^{(3)}}_{k \text { times }} \oplus \underbrace{K_{t, t}^{(3)} \oplus K_{t, t}^{(3)} \oplus \cdots \oplus K_{t, t}^{(3)}}_{\frac{k(k-1)}{2} \text { times }} \\
& \oplus \underbrace{Z_{t, t, t}^{(3)} \oplus Z_{t, t, t}^{(3)} \oplus \cdots \oplus Z_{t, t, t}^{(3)}}_{\frac{k(k-1)(k-2)}{6} \text { times }},
\end{aligned}
$$

where $V\left(K_{t}^{(3)}\right)$, disjoint sets G_{0} and G_{1} of $K_{t, t}^{(3)}$, and pairwise disjoint sets G_{0}, G_{1} and G_{2} of $Z_{t, t, t}^{(3)}$ are in $\left\{\left[v_{0}, v_{t-1}\right],\left[v_{t}, v_{2 t-1}\right],\left[v_{2 t}, v_{3 t-1}\right], \ldots,\left[v_{(k-1) t}, v_{k t-1}\right]\right\}$. As each of the hypergraphs $K_{t}^{(3)}, K_{t, t}^{(3)}$ and $Z_{t, t, t}^{(3)}$ is decomposable into t-cycles by Theorem 3.1, Lemma 2.3 and Corollary 2.6, respectively, we have the required decomposition.
Case 2. $n \equiv 1(\bmod t)$
Then $n=k t+1$ for some positive integer k. We may think of $K_{k t+1}^{(3)}$ as k copies of $K_{t+1}^{(3)}, \frac{k(k-1)}{2}$ copies of $K_{t, t}^{(3)}, \frac{k(k-1)(k-2)}{6}$ copies of $Z_{t, t, t}^{(3)}$ and $\frac{k(k-1)}{2}$ copies of $Z_{t, t, 1}^{(3)}$. That is,

$$
\begin{aligned}
K_{k t+1}^{(3)}= & \underbrace{K_{t+1}^{(3)} \oplus K_{t+1}^{(3)} \oplus \cdots \oplus K_{t+1}^{(3)}}_{k \text { times }} \oplus \underbrace{K_{t, t}^{(3)} \oplus K_{t, t}^{(3)} \oplus \cdots \oplus K_{t, t}^{(3)}}_{\frac{k(k-1)}{2} \text { times }} \\
& \oplus \underbrace{Z_{t, t, t}^{(3)} \oplus Z_{t, t, t}^{(3)} \oplus \cdots \oplus Z_{t, t, t}^{(3)}}_{\frac{k(k-1)(k-2)}{6} \text { times }} \oplus \underbrace{\underbrace{(3)}_{t, t, 1} \oplus Z_{t, t, 1}^{(3)} \oplus \cdots \oplus Z_{t, t, 1}^{(3)}}_{\frac{k(k-1)}{2} \text { times }}
\end{aligned}
$$

where

$$
\begin{aligned}
V\left(K_{t+1}^{(3)}\right) \in\{ & {\left[v_{0}, v_{t-1}\right] \cup\left\{v_{k t}\right\},\left[v_{t}, v_{2 t-1}\right] \cup\left\{v_{k t}\right\},\left[v_{2 t}, v_{3 t-1}\right] \cup\left\{v_{k t}\right\}, } \\
& \left.\ldots,\left[v_{(k-1) t}, v_{k t-1}\right] \cup\left\{v_{k t}\right\}\right\}
\end{aligned}
$$

disjoint sets G_{0} and G_{1} of $K_{t, t}^{(3)}$, pairwise disjoint sets G_{0}, G_{1} and G_{2} of $Z_{t, t, t}^{(3)}$, and disjoint sets G_{0} and G_{1} of $Z_{t, t, 1}^{(3)}$ are in $\left\{\left[v_{0}, v_{t-1}\right],\left[v_{t}, v_{2 t-1}\right],\left[v_{2 t}, v_{3 t-1}\right], \ldots,\left[v_{(k-1) t}, v_{k t-1}\right]\right\}$; and the set G_{2} of $Z_{t, t, 1}^{(3)}$ is $\left\{v_{k t}\right\}$. As each of the hypergraphs $K_{t+1}^{(3)}, K_{t, t}^{(3)}, Z_{t, t, t}^{(3)}$ and $Z_{t, t, 1}^{(3)}$ is decomposable into t-cycles by Lemma 3.2, Lemma 2.3, Corollary 2.6 and Corollary 2.7, respectively, we have the required decomposition.

Case 3. $n \equiv 2(\bmod t)$
Then $n=k t+2$ for some positive integer k. We may think of $K_{k t+2}^{(3)}$ as k copies of $K_{t+2}^{(3)}, \frac{k(k-1)}{2}$ copies of $K_{t, t}^{(3)}, \frac{k(k-1)(k-2)}{6}$ copies of $Z_{t, t, t}^{(3)}$ and $k(k-1)$ copies of $Z_{t, t, 1}^{(3)}$. That is,

$$
\begin{aligned}
K_{k t+2}^{(3)} & =\underbrace{K_{t+2}^{(3)} \oplus K_{t+2}^{(3)} \oplus \cdots \oplus K_{t+2}^{(3)}}_{k \text { times }} \oplus \underbrace{K_{t, t}^{(3)} \oplus K_{t, t}^{(3)} \oplus \cdots \oplus K_{t, t}^{(3)}}_{\frac{k(k-1)}{2} \text { times }} \\
& \oplus \underbrace{Z_{t, t, t}^{(3)} \oplus Z_{t, t, t}^{(3)} \oplus \cdots \oplus Z_{t, t, t}^{(3)}}_{\frac{k(k-1)(k-2)}{6} \text { times }} \oplus \underbrace{}_{\frac{k, t, 1}{Z_{t, k-1)}^{2} \text { times }} \underbrace{Z_{t, t, 1}^{(3)} \oplus \cdots \oplus Z_{t, t, 1}^{(3)}}_{\frac{k(k-1)}{2} \text { times }}}
\end{aligned}
$$

where

$$
\begin{aligned}
V\left(K_{t+2}^{(3)}\right) \in\left\{\left[v_{0}, v_{t-1}\right] \cup\left\{v_{k t}, v_{k t+1}\right\},\left[v_{t}, v_{2 t-1}\right] \cup\left\{v_{k t}, v_{k t+1}\right\},\left[v_{2 t}, v_{3 t-1}\right] \cup\left\{v_{k t}, v_{k t+1}\right\},\right. \\
\left.\ldots,\left[v_{(k-1) t}, v_{k t-1}\right] \cup\left\{v_{k t}, v_{k t+1}\right\}\right\} ;
\end{aligned}
$$

disjoint sets G_{0} and G_{1} of $K_{t, t}^{(3)}$, pairwise disjoint sets G_{0}, G_{1} and G_{2} of $Z_{t, t, t}^{(3)}$, and disjoint sets G_{0} and G_{1} of $Z_{t, t, 1}^{(3)}$ are in $\left\{\left[v_{0}, v_{t-1}\right],\left[v_{t}, v_{2 t-1}\right],\left[v_{2 t}, v_{3 t-1}\right], \ldots\right.$, $\left.\left[v_{(k-1) t}, v_{k t-1}\right]\right\}$; the set G_{2} of the first $\frac{k(k-1)}{2}$ copies $Z_{t, t, 1}^{(3)}$ is $\left\{v_{k t}\right\}$; and the set G_{2} of the last $\frac{k(k-1)}{2}$ copies $Z_{t, t, 1}^{(3)}$ is $\left\{v_{k t+1}\right\}$. As each of the hypergraphs $K_{t+2}^{(3)}, K_{t, t}^{(3)}, Z_{t, t, t}^{(3)}$ and $Z_{t, t, 1}^{(3)}$ is decomposable into t-cycles by Lemma 3.3, Lemma 2.3, Corollary 2.6 and Corollary 2.7, respectively, we have the required decomposition.
Proof of Corollary 1.1. Follows from: (i) $p \geq 5$ is prime and $p\binom{n}{3}$ implies $n \equiv 0,1$ or $2(\bmod p)$, (ii) p is prime implies $p \equiv 1$ or $5(\bmod 6)$, and (iii) Theorem 1.1.

REFERENCES

[1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1979.
[2] J.C. Bermond, Hamiltonian decompositions of graphs, directed graphs and hypergraphs, Ann. Discrete Math. 3 (1978), 21-28.
[3] J.C. Bermond, A. Germa, M.C. Heydemann, D. Sotteau, Hypergraphes hamiltoniens, [in:] Problémes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, 39-43.
[4] D. Bryant, S. Herke, B. Maenhaut, W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3 -uniform hypergraphs, Australas. J. Combin. 60 (2014) 2, 227-254.
[5] H. Jordon, G. Newkirk, 4-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin. 71 (2018) 2, 312-323.
[6] D. Kühn, D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, J. Combin. Theory Ser. A 126 (2014), 128-135.
[7] R. Lakshmi, T. Poovaragavan, 6-Cycle decompositions of complete 3-uniform hypergraphs, (submitted).
[8] P. Petecki, On cyclic hamiltonian decompositions of complete k-uniform hypergraphs, Discrete Math. 325 (2014), 74-76.
[9] M. Truszczyński, Note on the decomposition of $\lambda K_{m, n}\left(\lambda K_{m, n}^{*}\right)$ into paths, Discrete Math. 55 (1985), 89-96.
[10] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, Discrete Math. 132 (1994), 333-348
R. Lakshmi (corresponding author)
mathlakshmi@gmail.com
© https://orcid.org/0000-0001-9633-7676
Annamalai University
Department of Mathematics
Annamalainagar-608 002, India

Dharumapuram Gnanambigai Government Arts College for Women
Department of Mathematics
Mayiladuthurai-609 001, India
T. Poovaragavan
poovamath@gmail.com
(1) https://orcid.org/0000-0002-4315-1621

Annamalai University
Department of Mathematics
Annamalainagar-608 002, India
Received: January 12, 2020.
Accepted: June 5, 2020.

