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DECOMPOSITIONS
OF COMPLETE 3-UNIFORM HYPERGRAPHS
INTO CYCLES OF CONSTANT PRIME LENGTH

R. Lakshmi and T. Poovaragavan
Communicated by Andrzej Zak

Abstract. A complete 3-uniform hypergraph of order n has vertex set V with |V| = n and the
set, of all 3-subsets of V' as its edge set. A t-cycle in this hypergraph is v1, €1, v2, €2, ..., V¢, €, V1
where vi,v2,...,v; are distinct vertices and ep,e2,...,e; are distinct edges such that
Vi, Vit1 € e; for i € {1,2,...,t — 1} and v, v1 € e:. A decomposition of a hypergraph
is a partition of its edge set into edge-disjoint subsets. In this paper, we give necessary and
sufficient conditions for a decomposition of the complete 3-uniform hypergraph of order n
into p-cycles, whenever p is prime.
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1. INTRODUCTION

A hypergraph H consists of a finite nonempty set V of wvertices and a set & =
{e1,€2,...,em} of edges where each e; C V with |e;| > 0 for ¢ € {1,2,...,m}.
If |e;| = h, then we call e; an h-edge. If every edge of H is an h-edge for some h,
then we say that H is h-uniform. The complete h-uniform hypergraph K,gh’) is the
hypergraph with vertex set V', where |V| = n, in which every h-subset of V' determines
an h-edge. It then follows that K,(Lh) has (Z) edges. When h = 2, Ky(?) = K,, the
complete graph on n vertices.

A decomposition of a hypergraph H is a set F = {Fy, Fa, ..., Fi} of subhypergraphs
of H such that E(F) UE(F) U---UE(F) = E(H) and E(F;) NE(F;) = 0 for
all 4,7 € {1,2,...,k} with i« # j. We denote this by H = F1 @ Fo & ... ® Fi.
fH=F&F ... &Fisa decomposition such that F; & Fp = - 2 Fp, 2 G,
where G is a fixed hypergraph, then F is called a G-decomposition of H.
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A cycle of length t in a hypergraph H is a sequence of the form vy, ey, v9, €2,
..., Vg, €,0V1, Where v1,v9,...,v; are distinct vertices and eq, e, ..., e; are distinct
edges satisfying v;,v;41 € ¢; for i € {1,2,...,t — 1} and vy, v1 € ;.

) into Hamilton cycles were considered in [2,3] and the proof

Decompositions of K,(f
of their existence was given in [10]. Decompositions of K,(Lh) into Hamilton cycles were
considered in [6,8], a complete solution for A~ > 4 and n > 30 was given in [6], and
cyclic decompositions were considered in [8]. In [4], necessary and sufficient conditions
were given for a G-decomposition of K 7(13), where G is any 3-uniform hypergraph with at

(3)

most three edges and at most six vertices. In [5], decompositions of K into 4-cycles

were considered and their existence were established. In [7], decompositions of K
into 6-cycles were considered and their existence was given.

In this paper, we are interested in p-cycle decompositions of K,(f’), whenever p is
prime. A necessary condition for the existence of a t-cycle decomposition of Ky(f') is:
t divides the number of edges in K,(L3), that is, t| (g)

The main result of the paper is as follows:

Theorem 1.1. If ¢t > 5 is an odd integer, t =1 or 5 (mod 6) and n =0, 1 or 2
(mod t), then Ky({s) has a t-cycle decomposition.

Corollary 1.2. If p > 5 is prime, then K7(L3) has a p-cycle decomposition if and only
ifn=0,1o0r2 (mod p).

2. TOOLS

We will assume the vertex set of K,(f) as {v; : i € Z,}, where Z, is the set of
integers modulo n. For non-negative integers ¢ and j with ¢ < j, we denote the set
{vi,vig1,...,v5} by [v;,v;], and the set {i,i+1,...,5} by [4,]].

For convenience, we will often write the edge {vq4,vp, v} as v, — vy — v, and the
t—cycle V1,€1,VU2,€2,...,VUt, €, V1 AS (’Ul — Y1 — V2, V2 — Y2 —V3y...,0t — Yt — ’Ul), where
e, =v; —Yy; — Vi1 fori € {1,2,...,t — 1} and e; = vy — yp — v1.

2.1. THE HYPERGRAPH K2,

Define the 3-uniform hypergraph K,(,Ej’)n of order m + n as follows. Let
V(K®,) ={vi i € Znin}

grouped as Gog = [vg, Um—1] and G1 = [V, Vman—1]. Let 5(K7(5’)n) be the set of all
3-edges v, — vp — v, such that v,, vy, and v, are not all from the same group, that
is, at least one of {v,,vp, v} is an element of Gy and at least one of {v,,vp, v.} is

an element of G1. Note that £ (Kf,§)n)| = W A necessary condition for the

existence of a ¢-cycle decomposition of Kﬁ,‘f)n is that 2¢|mn(m +n — 2).
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Lemma 2.1. Ift > 5 is an odd integer, then K{i) decomposes into t-cycles.

Proof. The complete graph K; with vertex set [vy,v;] is Hamilton cycle decomposable.
For each Hamilton cycle (x1, 2, ..., 2, 21) in the Hamilton cycle decomposition of Kz,

(Vo — 21 — X2, To — Vg — T3, L3 — Vo — Tdy...,Lp—1 — Vg — Lt, Ty — T1 — Vo)

is a t-cycle in Kﬁ). A collection of all these t-cycles yields a decomposition of K f’t)

into t-cycles. O
Lemma 2.2. Ift > 5 is an odd integer, then Ké?’t) decomposes into t-cycles.

Proof. The complete graph K; with vertex set [va,v1] is Hamilton cycle decom-
posable. For convenience relabel the vertex vy by us and the vertices in [vs, vi41]
by [u1,us—1], where the suffixes under u are reduced modulo t — 1 with residues
1,2,...,t — 1. Now consider the Hamilton cycle decomposition:

{Cj P Uoo Ul U Ut — 14U Ut 24 Uy - - - WS | Uit | S Uegs | Ui sl
. t—3
ieln 7]y
. . . 3 .
The following are collections of ¢-cycles in KQ( t) obtained from Cj’s:

0._
{Cj = (Uoo — V0 — Ui4j, Utj — Vo — Ugtj, Uztj — Vo — Ut—145,
Ut—145 — Vo — U345, U345 — Vo — Ut—2+45,

Ut—245 — V0 — Ugtj, - - - 7U%+J‘ — Vo — u%+ja u%.ﬁj — Vo — U%Jrjv

. t—3
Urgs |~ V0 Ul Ut~ U0~ Uoso) T J € [O’ T} }
1._
{Cj = (uoo — U1 — Ul4j,Ul45 — V1 — U245, U245 — V1 — Ut—1+45,
Ut—1+45 — V1 — U345, U3+5 — V1 — Ut—2+4j, Ut—2+45 — V1 — Ugtj,.- -,

U%Jrj —’Ul—’LLtzl_'_j,’U,%_,'_j—Ul —U%+j,

. t—3
Uity T VLT Uy Ul T UL T Ueo) € [O’ T”

We obtain C;») from CJQ by replacing the edge u14; — vo — ug4; by ui14; — vo — v1; ie.,

!
0
{Cj = (Uoe — Vo — U4, Ut 4j — V1 — Vo, Vo — U4j — Ut—14j,
Ut—145 — Vo — U345, U345 — Vo — Ut—2445, Ut—245 — V0 — U445, -,
U T U0 T gy gty T 0 T R

. t—3
Mega w0 —ws o u)t G € (0,5
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’
ol 1 : .
.We obtain Cj from C; by replacing the edge Utgs | — V1 —Utt1 by vg —v1 — (GESUE
ie.,

’
1.
{Cj = (uoo — V1 — Ul4yj,Ul45 — V1 — U245, U245 — V1 — Up—145,

Ut—145 — V1 — U345, U345 — V1 — Ut—24j5, Ut—245 — VU1 — U44j5,-- -,

Uegs gy = U1 —Utsd gy Uil — Usgs = UL,
. Ot73
Ul—vo—u%ﬂ-,u#ﬂ—vl—uoo). je0,—|¢.

2
{09/7 croije {o, ?H

dt) . The edges of K2(73t) not in these

Observe that

forms a collection of ¢t — 1 edge-disjoint t-cycles in Ké
t-cycles are
0, =3

Uty — Vo — Uy, Utds ;— U1 — Uil & ] T {vo —v1 — U }-
These edges form the t-cycle

(U1 — Uos — Vo, Vo — U1 — U2, Uz — Vo — U3, U3 — Vg — Ud, Us — Vg — U, - - -,

Ut—1 — Vg — U+, U+l — V1 — U3, U438 — V1 — U5, U455 — V1l — UtL7, ...,

2 2 2 2 2 2 2 2
o —up —v1) i K®

Ut—2 — V1 — Ut—1,Ut—1 — UL — V1) M Lgy.

This completes the proof. O

Lemma 2.3. Ift > 5 is an odd integer, then Kt(? decomposes into t-cycles.

Proof. The complete graph K; is Hamilton cycle decomposable. Let Fy and F; be
decompositions of K into t-cycles with vertex sets [vg, vi—1] and [vy, va—1], respectively.

For each t-cycle (z1,x2,...,2¢, 21) of Fo, construct ¢ edge-disjoint ¢-cycles
(T1 — Vi — T2, 2 — V; — T3, T3 — V; — Ty, ..., Ty1 — Vj — Ty, Ty — U — T1),
where v; € [vg,v9;—1] and for each t-cycle (y1,y2,...,y:,y1) of Fi, construct t

edge-disjoint t-cycles
(yl —Vj —Y2,Y2 =V —Y3,Y3 — V5 —Ydy---, Yt—1 — V5 —Yt, Yt — V5 _yl),

where v; € [vg,v—1]. Collection of these t-cycles yield a decomposition of Kt(i) into
t-cycles. O

2.2. THE HYPERGRAPH Z%).,

Define the 3-uniform hypergraph Z,(,?gﬂ» of order p + g + r as follows:

V(Z;(y?g,r) ={vi 11 € Lpigir}
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grouped as Gy = [vo,Vp—1], G1 = [Up, Uptq—1] and Go = [Vpiq, Uptq+r—1] and let
E(Zzg?,;,r) be the set of all 3-edges v, — vy — v, such that a € [0,p—1], b € [p,p+q—1]
and ¢ € [p+ ¢,p + ¢+ r — 1]. Note that |5(Z1()337)| = pqr. A necessary condition for
the existence of a t-cycle decomposition of Z,(,?’%r is that ¢|pgr.

Lemma 2.4. Ift > 5 is an odd integer, then Zt(dt)r decomposes into t-cycles.
To prove this lemma, we need the following theorem.

Theorem 2.5 ([9]). If m is odd and k divides m, then the complete bipartite graph
Ko m has a decomposition into paths of length k.

Proof of Lemma 2.4. By Theorem 2.5, the complete bipartite graph K} ; with bipartition
([vo, ve—1], [vt, v2t—1]) has a decomposition F into paths of length ¢. For each path

(x1,22,...,2¢,x¢41) of length ¢ in F, construct r edge-disjoint ¢-cycles

(Uz‘ — X1 —X2,T2 —V; —T3, T3 —V; —T4,T4 —Vj —T5,...,Lt—1 Vi —Tt, Tt — Tt41 —Ui)7
where v; € [vas, Uat1r—1]. This collection of t-cycles yield a decomposition of Zt(i),r into
t-cycles. a

Corollary 2.6. Ift > 5 is an odd integer, then Zt(i)’t decomposes into t-cycles.

Corollary 2.7. Ift > 5 is an odd integer, then Zt(i)’l decomposes into t-cycles.

3. PROOF OF THE MAIN RESULT

We need the following definition and theorem. A Hamilton cycle of a hypergraph H
on n vertices is a cycle of length n.

Theorem 3.1 ([2,3,10])). Ifn=1, 2, 4 or5 (mod 6), then K decomposes into
Hamilton cycles.

Decomposition of Kt(i)l from that of Kt(s)

Lemma 3.2. Ift > 5 is an odd integer andt =1 or5 (mod 6), then Kt(i)l decomposes
into t-cycles.

Proof. By Theorem 3.1 and Lemma 2.1, Kt(g) and Kf’t) are, respectively, t-cycle
decomposable and so is Kt(i)l = Kt(g) ) Kf?t), where V(Kt(g)) = [v1,v¢] and V(Kf’t)) =
Go U Gl, GO = {’Uo}, Gl = [vl,vt]. ]
Decomposition of Kt(i)Q from that of Kt(g)

Lemma 3.3. Ift > 5 is an odd integer andt =1 or5 (mod 6), then Kt(i)2 decomposes
into t-cycles.
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Proof. By Theorem 3.1 and Lemma 2.2, Kt(?’) and Kz(i) are, respectively, t-cycle

decomposable and so is Kt(i)Q = Kt(?’) @ K(?t), where V(Kt(g)) = [va, ve41] and V(Kéi))
= GO U Gl, GO = [Uo,’Ul], Gl = [1)2,1],54.1]. O

Proof of Theorem 1.1. Case 1.n=0 (mod t)

Then n = kt for some positive integer k. We may think of K ,Ei’) as an edge-disjoint
k(k—1)

union of k copies of Kt(3), —=5— copies of Kt(i) and W copies of Zt(?;)t That is,

EK)-KkPokP o - okPokf okd e - oK

k times k(k2—1) times
3 3 3
GRAYNCRAY NI PAY

7]«(19—13@—2) times

where V(Kt(g)), disjoint sets Gy and G; of Kt(i)7 and pairwise disjoint sets Gy, G1
and Go of Zt(i?t are in {[vo, v¢—1], [V¢, v2e—1], [V2t, v3e-1], - - -, [Vk—1)¢, Vke—1]}. As each

of the hypergraphs Kt(g), Kt(i) and Zt(i),t is decomposable into ¢-cycles by Theorem 3.1,
Lemma 2.3 and Corollary 2.6, respectively, we have the required decomposition.

Case 2.n=1 (mod t)

Then n = kt + 1 for some positive integer k. We may think of K]Sll as k copies

of Kt(i)l, k(kgl) copies of Kt(i)7 7]“1“_125(16_2) copies of Zt(i)’t and @ copies of Zt(i)l
That is,
Kibn=Kh oKD o oK okl oK) o oK)
k times B s
oz8 0280 028,028,028 0. 028,
EEDEZ2) fimes EEZD times
where

V(E®)) € {[vo,ve-1] U {oge}, [vr, var—1] U {one }, [vat, vae—1] U {oke},
s [Og=1yes V1] U {vre } 15

disjoint sets Gy and G of Kt(i), pairwise disjoint sets Gy, G1 and Gy of Z,f(izt, and dis-
joint sets Gy and G of Zt(i),l are in {[vo, v¢—1], [vt, Vas—1], [Vat, v3e—1]s - -, [V(e—1)8s VRe—1]};
and the set Ga of Zt(i?l is {vkt}. As each of the hypergraphs KS’_)I, Kt(i), Zt(i?t and

Zt(i)’l is decomposable into t-cycles by Lemma 3.2, Lemma 2.3, Corollary 2.6 and
Corollary 2.7, respectively, we have the required decomposition.
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Case 3. n =2 (mod t)
Then n = kt + 2 for some positive integer k. We may think of K ,5522 as k copies of

Kt(i)z, k(k D copies of K(d) M copies of Zt(dt)t and k(k — 1) copies of Zt(‘?l
That is,
3 3 3 3 3
Klgt)+2 = Kt(+)2 ® Kt(+)2 SRR K§+)2 @Kt( t) @ Kt( ‘o Kt(,t)
k times k(k;l) times
3 3 3
Zt( t)t ® Zt(,t),t D-- ZfF t)t S Zt( t)l D Zt(,t),l D---D Zt(,t),l
7h<k71)(k72) times Lk;l) times
3
oz 025 002,
719(’6271) times
where

V(Kt(i)z) € {[vo, ve—1] U {vre, Vits1 s [Ve, 20— 1] U {0kt, Vg1 }s (V265 030-1] U {0k, Vktgr

) [U(k—m, Vkt—1] U {Vkt, Vg1

disjoint sets Gy and G of K“, pairwise disjoint sets Gy, G; and Gy of Zttt,
and disjoint sets Gg and G of Zt(t1 are in {[vo,vi—1], [ve, var—1], [vat, v3e—1], - -+,
[V(k—1)t, Vkt—1]}; the set G2 of the first ( —U copies Zt(t 1 18 {vkt}; and the set Gy of
the last k(k )

and Zt( t)l is decomposable into t-cycles by Lemma 3.3, Lemma 2.3, Corollary 2.6 and

Corollary 2.7, respectively, we have the required decomposition. O

copies Zt 118 {vkes1} As each of the hypergraphs Kt(_?_)Q, Kt(i), Zt(i)’t

Proof of Corollary 1.1. Follows from: (i) p > 5 is prime and p|(}) implies n = 0, 1
or 2 (mod p), (ii) p is prime implies p =1 or 5 (mod 6), and (iii) Theorem 1.1. O
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