Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present article deals with the propagation of inhomogeneous waves in an orthotropic medium based on Eringen’s nonlocal thermoelasticity. For chosen directions of propagation and a real finite inhomogeneity parameter, a complex slowness vector is specified to define the propagation of inhomogeneous incident wave. Then the reflection, transmission of plane waves at a plane interface between two nonlocal orthotropic thermoelastic halfspaces are discussed. In this incidence, horizontal slowness determines the slowness vectors for all reflected, transmitted waves. For each reflected, transmitted wave, the corresponding slowness vector is resolved to define its phase direction, phase velocity and attenuation angle. Appropriate boundary conditions on this wave-field determine the amplitude ratios for reflected, transmitted waves relative to the incident wave. The numerical examples are provided to show the effect of the inhomogeneity of incident wave, nonlocal parameter on the propagation characteristic of the reflected, transmitted waves.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
373--389
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
Bibliografia
- 1. H.W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physic of Solids, 15, 299–309, 1967.
- 2. A.E. Green, K.A. Lindsay, Thermoelasticity, Journal of Elasticity, 2, 1–7, 1972.
- 3. R. Kumar, Reflection/transmission of plane waves at an imperfectly bonded interface of two orthotropic generalized thermoelastic half-spaces, Materials Science and Engineering, A 472, 83–96, 2008.
- 4. M.D. Sharma, Propagation of inhomogeneous plane waves in anisotropic viscoelastic media, Acta Mechanica, 200, 145–154, 2008.
- 5. B. Singh, Wave propagation in an initially stressed transversely isotropic thermoelastic solid half-space, Applied Mathematics and Computation, 217, 705–715, 2010.
- 6. V. Cerveny, I. Psencık, Plane waves in viscoelastic anisotropic media – I, Theory, Geophysical Journal International, 161, 197–212, 2005.
- 7. V. Cerveny, I. Psencık, Plane waves in viscoelastic anisotropic media – II, Numerical examples, Geophysical Journal International, 161, 213–229, 2005.
- 8. A.C. Eringen, Theory of nonlocal thermoelasticity, International Journal of Engineering Science, 12, 1063–1077, 1974.
- 9. A.C. Eringen, Nonlocal Continuum Theories, Springer, New York, 2002.
- 10. D.X. Tung, Surface waves in nonlocal transversely isotropic liquid-saturated porous solid, Archive of Applied Mechanics, 91, 2881–2892, 2021.
- 11. D.X. Tung, Wave propagation in nonlocal orthotropic micropolar elastic solids, Archives of Mechanics, 73, 3, 237–251, 2021.
- 12. D.X. Tung, The reflection and transmission of waves at an imperfect interface between two nonlocal transversely isotropic liquid-saturated porous halfspaces, Waves in Random and Complex Media, 2021, doi: 10.1080/17455030.2021.1954265.
- 13. S. Biswas, Surface waves in porous nonlocal thermoelastic orthotropic medium, Acta Mechanica, 231, 2741–2760, 2020, doi: 10.1007/s00707-020-02670-2.
- 14. S. Biswas, Fundamental solution of steady oscillations equations in nonlocal thermoelastic medium with voids, Journal of Thermal Stresses, 43, 3, 2020, doi: 10.1080/01495739. 2019.1699482.
- 15. S. Deswal, R. Kumar, S.K. Sheokand, K.K. Kalkal, Reflection and transmission between an orthotropic thermoelastic half-space and an initially stressed orthotropic rotating thermoelastic diffusive half-space, Journal of Thermal Stresses, 43, 6, 739–761, 2020.
- 16. S. Modal, N. Sarkar, N. Sarkar, Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity, Journal of Thermal Stresses, 42, 8, 2019, doi: 10.1080/01495739.2019.1591249.
- 17. Y.J. Yu, X.G. Tian, Q.L. Xiong, Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity, European Journal of Mechanics/A Solids, 60, 238–253, 2016.
- 18. M.D. Sharma, Correct procedure to study reflection in orthotropic thermoelastic medium: inhomogeneous propagation of waves, Applied Mathematics and Computation, 391, 125692, 2021, doi: 10.1016/j.amc.2020.125692.
- 19. V. Cerveny, Reflection/transmission laws for slowness vectors in viscoelastic anisotropic media, Studia Geophysica et Geodaetica, 51, 391–410, 2007.
- 20. E.S. Krebes, P.F. Daley, Difficulties with computing anelastic plane-wave reflection and transmission coefficients, Geophysical Journal International, 170, 205–216, 2007.
- 21. E.S. Krebes, S. Moradi, Conditions for the occurence of unphysical negative values of the anelastic SH plane wave energy-based transmission coefficient, Studia Geophysica et Geodaetica, 56, 323–347, 2012, doi: 10.1007/s11200-011-9040-6.
- 22. P.G. Richards, On wave fronts and interfaces in anelastic media, Bulletin of the Seismological Society of America, 74, 6, 2157–2165, 1984.
- 23. B.O. Ruud, Ambiguous reflection coefficients for anelastic media, Studia Geophysica et Geodaetica, 50, 479–498, 2006
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cf5f2b9-fe4d-45af-8106-dff4f96c184b