PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Non-Metallic Inclusions on the Hot Ductility of High-Mn Steels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work was to determine the effect of non-metallic inclusions on the hot ductility of two newly developed high-Mn austenitic steels (27Mn-4Si-2Al and 24Mn-3Si-1.5Al-Ti). For this purpose, a hot tensile test was carried out in the temperature range from 1050°C to 1200°C with a constant strain rate of 2.5⸱10-3 s-1. The tests were performed on the Gleeble 3800 thermomechanical simulator. Hot ductility of tested steels was defined by determining the reduction in area (% RA). Examined steels demonstrate diversified hot ductility. Clearly higher hot ductility was noted for the 24Mn-3Si-1.5Al-Ti steel. The reduction in area of this steel in the temperature range from 1050°C to 1200°C decreases from approx. 90% to about 58%, while the reduction in area of the 27Mn-4Si-2Al steel, in the same temperature range, decreases from approx. 66% to about 34%. The presence of single, regular-shaped AlN particles and complex MnS-AlN-type non-metallic inclusions was revealed in the 27Mn-4Si-2Al steel. Whereas fine (Ce, La, Nd)S-type sulphides, properly modified with rare earth elements, were identified in the 24Mn-3Si-1.5Al-Ti steel. The AlN-type inclusions and complex MnS-AlN-type inclusions were not revealed in the 24Mn-3Si-1.5Al-Ti steel. This is due to the presence of Ti microaddition, the concentration of which guaranteed binding of the whole nitrogen into stable TiN-type nitrides. Sulphides, disclosed in the 24Mn-3Si-1.5Al-Ti steel, are globular or slightly elongated in the direction of plastic deformation, as confirmed by a very low value of the elongation factor equal 1.48. This creates the opportunity to produce sheets of high strength and ductility and low anisotropy of mechanical properties.
Twórcy
autor
  • Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering, Department of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • 1. Fonstein N. Advanced high strength sheet steels. Physical metallurgy, design, processing and properties. Springer International Publishing, Switzerland, 2015.
  • 2. Kuziak R., Kawalla R., Waengler S. Advanced high strength steels for automotive industry. Archives of Civil and Mechanical Engineering 2008; 8(2): 103–117.
  • 3. Takahashi M. Development of high strength steels for automobiles. Nippon Steel Technical Report 2003; 88(7): 2–7.
  • 4. Lee S., Lee S-Y., Han J., Hwang B. Deformation bahavior and tensile properties of an austenitic Fe- 24Mn-4Cr-0.5C high-manganese steel: Effect of grain size. Materials Science and Engineering A 2019; 742: 334–343.
  • 5. Wesselmecking S., Haupt M., Ma Y., Song W., Hirt G., Bleck W. Mechanism-controlled thermome- chanical treatment of high manganese steels. Materials Science and Engineering A 2021; 828: 1–9.
  • 6. Sozańska-Jędrusik L., Mazurkiewicz J., Borek W., Matus K. Carbides analysis of the high strength and low density Fe-Mn-Al-Si steels. Archives of Metallurgy and Materials 2018; 63(1): 265–276.
  • 7. De Cooman B.C., Estrin Y., Kim S.K. Twinning induced plasticity (TWIP) steels. Acta Materialia 2018; 142: 283–362.
  • 8. Fojt-Dymara G., Opiela M., Borek W. Susceptibility of high-manganese steel to high-temperature cracking. Materials 2022; 15(22): 1–11.
  • 9. Jabłońska M., Śmiglewicz A., Niewielski G. The effect of strain rate on the mechanical properties and microstructure of the high-Mn steel after dynamic deformation tests. Archives of Metallurgy and Materials 2015; 60(2): 123–126.
  • 10. Liu Ch., Shen S., Xie P., Wu C. Deformation behaviors of a Fe-20Mn-3Al-3Si TRIP steel under quasi- static compression and dynamic impact. Materials Characterization 191; 1–10
  • 11. Pierce D.T., Benzing J.T., Jiménez J.A., Hickel T., Bleskov I., Keum J., Raabe D., Witting J.E. The influence of temperature on the strain-hardening bahavior of Fe-22/25/28Mn-3Al-3Si TRIP/TWIP steels. Materialia 2022; 22: 1–12.
  • 12. Opiela M., Fojt-Dymara G., Grajcar A., Borek W. Effect of grain size on the microstructure and strain hardening behavior of solution heat-treated low-C high-Mn steel. Materials 2020; 13(7): 1–13.
  • 13. Frommeyer G., Brüx U., Neumann P. Supra-ductile and high-strength manganese TRIP/TWIP steels for high energy absorption purposes. ISIJ International 2003; 43(3): 438–446.
  • 14. Allain S., Chateau J.P., Bouaziz O. A physical model of the twinning-plasticity effect in a high manganese austenitic steel. Materials Science and Engineering A 2004; 387: 143–147.
  • 15. Kim J.K., Chen L., Kim H.S., Kim S.K., Estrin Y., De Cooman B.C. On the tensile behavior of high-manganese twinning-induced plasticity steel. Metallurgical and Materials Transactions A 2009; 40: 3147–3158.
  • 16. Liu H., Liu J., Wu B., Shen Y., He Y., Su X. Effect of Mn and Al contents on hot ductility of high al- loy Fe-xMn-C-yAl austenite TWIP steels. Materials Science and Engineering A 2017; 708: 360–374.
  • 17. Mejia I., Salas-Reyes A.E., Calvo J., Cabrera J.M. Effect Ti and B microadditions on the hot ductility behavior of a high-Mn austenitic Fe-23Mn-1.5Al- 1.3Si-0.5C TWIP steel. Materials Science and Enineering A 2015; 648: 311–329.
  • 18. Kang S.E., Banerjee J.R., Maina E.M., Mintz B. Influence of B and Ti on hot ductility of high Al. and high Al, Nb containing TWIP steels. Materials Science and Technology 2013; 29: 1225–1232.
  • 19. Liu H., Liu J., Michelic S.K., Shen S., Su X., Wu B., Dinh H. Characterization and analysis of non-metallic inclusions in low carbon Fe-Mn-Si-Al TWIP steels. Steel Research International 2016; 87: 1723–1732.
  • 20. Li D., Feng Y., Song S., Liu Q., Bai Q., Wu G., Ren F. Influence of Nb-microalloying on microstructure and mechanical properties of Fe-25Mn-3Si-3Al TWIP steel. Materials and Design 2015; 84: 238–244.
  • 21. Park J.H., Kim D-J., Min D.J. Characterization of nonmetallic inclusions in high-manganese and aluminium-alloyed austenitic steels. Metallurgical and Materials Transactions A 2012; 43(7): 2316–2324.
  • 22. Wang Y-N., Yang J., Wang R-Z., Xin X-L., Xu L-Y. Effects of non-metallic inclusions on hot ductility of high manganese TWIP steels containing different aluminium contents. Metallurgical and Materials Transactions B 2016; 47: 1697–1712.
  • 23. Hamada A.S., Karjalainen I.P. Hot ductility bahaviour of high-Mn TWIP steels. Materials Science and Engineering A 2011; 528: 1819–1827.
  • 24. Jang J-M., Kim S-J., Kang N.H., Cho K.M., Suh D.W. Effect of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel. Metals and Materials International 2009; 15: 909–916.
  • 25. Kim J., Lee S-J., De Cooman B.C. Effect of Al on the stacking fault energy of Fe-18Mn-0.6C twinning-induced plasticity. Scripta Materialia 2011; 65: 363–366.
  • 26. Mintz B. The influence of composition on the hot ductility of steels and to the problem of transverse cracking. ISIJ International 1999; 39: 833–855.
  • 27. Mintz B., Yue S., Jonas J.J. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting. International Materials Reviews 1991; 36: 187–217.
  • 28. Kang S.E., Tuling A., Banerjee J.R., Gunawarnada W.D, Mintz B. Influence of B on hot ductility of high Al, TWIP steels. Materials Science and Technology 2011; 27: 95–100.
  • 29. Kang S.E., Banerjee J.R., Mintz B. Influence of S and AlN on hot ductility of high Al, TWIP steels. Materials Science and Technology 2012; 28: 589–596.
  • 30. Kang S.E., Banerjee J.R., Mintz B. The hot ductility of Nb/V containing high Al, TWIP steels. Materials Science and Technology 2011; 27: 909–915.
  • 31. Kang S.E., Banerjee J.R., Tuling A. Influence of P and N on hot ductility of high Al, boron containing TWIP steels. Materials Science and Technology 2014; 30: 1328–1335.
  • 32. Abushosha R., Comineli O., Mintz B. Influence of Ti on hot ductility of C-Mn-Al steels. Materials Science and Technology 1999; 15: 278–286.
  • 33. Qaban A., Mintz B., Kang S.E., Naher S. Hot ductility of high Al TWIP steels containing Nb and Nb-V. Materials Science and Technology 2017; 33: 1645–1656.
  • 34. Gigacher G., Krieger W., Scheler P.R., Thomser C. Non-metallic inclusions in high-manganese steels. Steel Research International 2005; 76(9): 644–649.
  • 35. Grässel O., Frommeyer G., Derder C., Hofmann H. Phase transformation and mechanical properties of Fe-Mn-Si-Al TRIP steels. Journal Physique 1997; 7: 338–388.
  • 36. Grässel O., Kruger L., Frommeyer G., Meyer L.W. High-strength Fe-Mn-(Al,Si) TRIP/TWIP steels development – properties – application. International Journal of Plasticity 2000; 16: 391–1409.
  • 37. Pichler A., Stiaszny P. TRIP steel with reduced silicon content. Steel Research 1999; 70(11): 459–465.
  • 38. Frommeyer G., Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-Si light-weight TRIPLEX steels. Steel Research International 2006; 77(9–10): 627–633.
  • 39. Abushosha R., Ayyad S., Mintz B. Influence of cooling rate and MnS inclusions on the hot ductility of steels. Materials Science and Technology 1998; 14: 227–235.
  • 40. Opiela M., Grajcar A. Modification of non-metallic inclusions by rare-earth elements in microalloyed steels. Archives of Foundry Engineering 2012; 12(2): 129–134.
  • 41. Mintz B., Qaban A. The influence of precipitation, high levels of Al, Si, P and a small B addition on the hot ductility of TWIP and TRIP assisted steels: A critical review. Metals 2022; 12(3): 1–31.
  • 42. Borrmann L., Senk D., Steenken B., Rezende J. Influence of cooling and strain rates on the hot ductility of high manganese steels within the system Fe-Mn-Al-C. Steel Research International 2020; 92(2): 1–10.
  • 43. Kang S.E., Kang M.H., Mintz B. Influence of vanadium, boron and titanium on hot ductility of high Al TWIP steels. Materials Science and Technology 2020; 37: 42–58.
  • 44. Osinkolu G.A., Tacikowski M., Kobylanski A. Combined effect of AlN and sulphur on hot ductility of high purity iron-base alloys. Materials Science and Technology 1985; 1: 520–525.
  • 45. Fojt-Dymara G., Opiela M. Hot ductility behawior of Fe-0.05C-24Mn-3.5Si-1.6Al steel with Nb and Ti microadditions. International Journal of Modern Manufacturing technologies 2022; 2: 319–328.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cf1f5aa-6df3-48d3-8b63-10536d583214
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.