PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie metod molekularnych w badaniach bioremediacji substancji ropopochodnych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Application of molecular methods in bioremediation of petroleum substances
Języki publikacji
PL
Abstrakty
PL
Zastosowanie nowoczesnych metod molekularnych zrewolucjonizowało dotychczasową wiedzę w zakresie filogenetycznej i funkcjonalnej różnorodności mikroorganizmów uczestniczących w procesach bioremediacji środowisk, w tym gleb, zanieczyszczonych substancjami ropopochodnymi. Ekosystem glebowy jest silnie zróżnicowanym układem ze stosunkowo wysokim poziomem prokariotycznej różnorodności. Tradycyjne techniki mikrobiologiczne, oparte na izolacji i hodowli w warunkach laboratoryjnych, nie zapewniają pełnego obrazu różnorodności drobnoustrojów występujących w środowiskach skażonych węglowodorami ropopochodnymi. Obecnie szacuje się, że klasyczne metody pozwalają izolować mniej niż 1% populacji mikroorganizmów glebowych. Tym samym zastosowanie metod molekularnych jako narzędzi diagnostycznych przyczyniło się do odkrycia nowych, dotąd niezidentyfikowanych mikroorganizmów. Dodatkowo techniki te oferują możliwość śledzenia zmian w zbiorowości mikroorganizmów w trakcie trwania procesów bioremediacji. W pracy przedstawiono przegląd nowoczesnych molekularnych technik mikrobiologicznych stosowanych w procesach bioremediacji środowisk zanieczyszczonych ksenobiotykami.
EN
Modern molecular techniques have greatly increased our knowledge concerning phylogenetic and functional diversity of microorganisms during bioremediation of oil-polluted environments such as soil. Soil ecosystem is relatively complex with a high level of prokaryotic diversity. The application of traditional culture-based techniques does not provide a full picture into phylogenetic and functional diversity of microbial community inhabiting oil-contaminated niches, since only a small fraction of the mentioned microbes may be cultivated in artificial media. Nowadays, less than 1% of these diverse microorganisms are cultivable by traditional cultivation techniques. Therefore, the use of molecular methods in studying microbial populations of hydrocarbon-polluted soils has led to the discovery of novel and unrecognized microorganisms. Such complex microbial diversity and dynamics in contaminated soil offer a resounding opportunity for bioremediation strategies. The paper presents an overview of modern approaches and applications of molecular microbiological techniques in bioremediation of petroleum-polluted environmental matrices. A general outline of the recent advances in this field is also given.
Czasopismo
Rocznik
Strony
829--842
Opis fizyczny
Bibliogr. 65 poz., il.
Twórcy
autor
  • Zakład Mikrobiologii Instytut Nafty i Gazu ul. Lubicz 25A, 31-503 Kraków
autor
  • Zakład Mikrobiologii Instytut Nafty i Gazu ul. Lubicz 25A, 31-503 Kraków
  • Zakład Mikrobiologii Instytut Nafty i Gazu ul. Lubicz 25A, 31-503 Kraków
Bibliografia
  • [1] Alonso-Gutierrez J., Teramoto M., Yamazoe, Harayama S., Figueras A., Novoa B.: Alkane-degrading properties of Dietzia sp. Hob, a key player in the Prestige oil spill biodegradation. Journal of Applied Microbiology 2011, vol. 111, pp. 800-810.
  • [2] Amann R., Fuchs B. M.: Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature Reviews Microbiology 2008, vol. 6, pp. 339-348.
  • [3] Baldwin B., Nakatsu C., Nies L.: Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Applied and Environmental Microbiology 2003, vol. 69, pp. 3350-3358.
  • [4] Bodrossy L.: Diagnostic oligonucleotide microarrays for microbiology. [W:] Blalock E. (ed.): A Beginner's Guide to Microarrays. New York, Kluwer Academic Publishers, 2003, pp. 43-92.
  • [5] Brakstad O. G., Bonaunet K.: Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0-5 degrees C) and bacterial communities associated with degradation. Biodegradation 2006, vol. 17, pp. 71-82.
  • [6] Byrd J. J., Xu H. S., Colwell R. R.: Viable but nonculturable bacteria in drinking water. Applied and Environmental Microbiology 1991, vol. 57, pp. 875-878.
  • [7] Cavalca L., Dell'Amico E., Andreoni V.: Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Applied Microbiology and Biotechnology 2004, vol. 64, pp. 576-587.
  • [8] Christensen N., Batstone D. J., He Z., Angelidaki I., Schmidt J. E.: Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation. "Water Science and Technology" 2004, vol. 50, pp. 237-244.
  • [9] Davis K. E. R., Joseph S. J., Janssen P. H.: Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Applied and Environmental Microbiology 2005, vol. 71, pp. 826-834.
  • [10] de los Reyes F., Ritter W., Raskin L.: Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems. Applied and Environmental Microbiology 1997, vol. 63, pp. 1107-1117.
  • [11] Ebie Y., Matsumura M., Noda N., Tsuneda S., Hirata A., Inamori Y.: Community analysis of nitrifying bacteria in an advanced and compact Gappei-Johkasou by FISH and PCR-DGGE. Water Science and Technology 2002, vol. 46, pp. 105-111.
  • [12] Eickhorst T., Tippkoetter R.: Detection of microorganisms in undisturbed soil combining fluorescence in situ hybridization (FISH) and micropedological methods. Soil Biology and Biochemistry 2008, vol. 40, pp. 1284-1294.
  • [13] Eickhorst T., Tippkoetter R.: Improved detection of soil microorganisms using fluorescence in situ hybridization (FISH) and catalyzed reporter deposition (CARD-FISH). Soil Biology and Biochemistry 2008, vol. 40, pp. 1883-1891.
  • [14] Eriksson M., Sodersten E., Yu Z., Dalhammer G., Mohn W. W.: Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrade-reducing conditions in enrichment cultures from northern soils. Applied and Environmental Microbiology 2003, vol. 69, pp. 275-84.
  • [15] Grace Liu P. W., Chang T. C., Whang L. M., Kao C. H., Pan P. T., Cheng S. S.: Bioremediation of petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift. International Biodeterioration & Biodegradation 2011, vol. 65, pp. 1119-1127.
  • [16] Guo C., Dang Z., Wong Y., Tam F. T.: Biodegradation ability and dioxgenase genes of PAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments. International Biodeterioration & Biodegradaton 2010, vol. 64, pp. 419-426.
  • [17] Hendrickx B., Dejonghe W., Faber F., Boenne W., Bastiaens L., Verstraete W.: PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiology Ecology 2006, vol. 55, pp. 262-273.
  • [18] Hilyard E. J., Jones-Meehan J. M., Spargo B. J., Hill R. T.: Enrichment, isolation and Phylogenetic identification of polycyclic aromatic hydrocarbon-degrading bacteria from Elizabeth River sediments. Applied and Environmental microbiology 2008, vol. 74, pp. 1176-1182.
  • [19] Iwai S., Kurisu F., Urakawa H., Yagi O., Kasuga I., Furimai H.: Development of an oligonucleotide microarray to detect di- and monooxygenase genes for benzene degradation in soil. FEMS Microbiology Letters 2008, vol. 285, pp. 111-121.
  • [20] Jardillier L., Boucher D., Personnic S., Jacquet S., Thenot A., Sargos D.: Relative importance of nutrients and mortality factors on prokaryotic community composition in two lakes of different trophic status: microcosm experiments. FEMS Microbiological Ecology 2005, vol. 53, pp. 429-443.
  • [21] Ji S. C., Kim D., Yoon J. H., Lee C. H.: Metagenomic Analysis of BTEX-Contaminated Forest Soil Microcosm. Journal of Microbiology and Biotechnology 2007, vol. 17, pp. 668-672.
  • [22] Kao C. M., Chen C. S., Tsa F. Y., Yang K. H., Chien C. C., Liang S. H., Yang C. A., Chen S. C.: Application of real-time PCR, DGGE fingerprinting and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. Journal of Hazardous Materials 2010, vol. 178, pp. 409-416.
  • [23] Kaczmarczyk M., Bartoszcze M.: Mikromacierze DNA - nowe narzedzie w wykrywaniu czynnikow biologicznych. Przeglad Epidemiologiczny 2006, vol. 60, s. 803-811.
  • [24] Katsivela E., Moore E. R., Kalogerakis N.: Biodegradation of aliphatic and aromatic hydrocarbons: specificity among bacteria isolated from refinery waste sludge. Water, Air and Soil Pollution 2003, vol. 3, pp. 103-115.
  • [25] Katsivela E., Moore E. R., Maroukli D., Stroempl C., Pieper D., Kalogerakis N.: Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in landfarming sites. Biodegradation 2005, vol. 16, pp. 169-180.
  • [26] Kirk J., Beaudette L., Hart M., Moutoglis P., Klironomos J., Lee H., Trevors J.: Methods of studying soil microbial diversity. Journal of Microbiological Methods 2004, vol. 58, pp. 169-188.
  • [27] Kostka J. E., Prakash O., Overholt W. A., Green S. J., Freyer G., Canion A., Delgardio J., Norton N., Hazen T. C., huettel M.: Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deep horizon oil spill. Applied and Environmental Microbiology 2011, vol. 77, pp. 7962-7974.
  • [28] Kotsyurbenk O. R., Chin K. J., Glagolev M. V., Stubner S., Simankova M. V., Nozhevnikova A. N.: Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environmental Microbiology 2004, vol. 6, pp. 1159-1173.
  • [29] Kumar Y., Westram R., Kipfer P., Meier H., Ludwig W.: Evaluation of sequence alignments and oligonucleotide probes with respect to the three-dimensional structure of ribosomal RNA using ARB software package. BMC Bioinformatics 2006, vol. 7, p. 240, doi: 10.1185/1471-2105-7-240.
  • [30] Lee N., Nielsen P., Andreasen K., Juretschko S., Nielsen J., Schleifer K. H., Wagner M.: Combination of fluorescent in situ hybridization and microautoradiography - a new tool for structure-function analyses in microbial ecology. Applied and Environmental Microbiology 1999, vol. 65, pp. 1289-1297.
  • [31] Leys N. M. E., Ryngaert A., Bastiaens L., Verstraete W., Top E. M., Springael D.: Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Applied and Environmental microbiology 2004, vol. 70, pp. 1944-1955.
  • [32] Liu C., Wang W., Wu Y., Zhou Z., Lai Q., Shao Z.: Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environmental Microbiology 2011, vol. 13, pp. 1168-1178.
  • [33] Liu H. J., Yang C. Y., Tian Y., lin G. H., Zheng T. L.: Screening of PAH-degrading bacteria in a mangrove swamp using PCR-RFLP. Marine Pollution Bulletin 2010, vol. 60, pp. 2056-2061.
  • [34] Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhu Kumar, Buchner A., Lai T., Steppi S., jobb G., Foerster W., Brettske I., Gerber S., Ginhart A. W., gross O., Grumann S., Hermann S., Jost R., koenig A., Liss T., Luessmann R., May M., Nonhoff B., Reichel B., Strehlow R., Stamatakis A., Stuckmann N., Vilbig A., Lenke M., Ludwig T., Bode A., Schleifer K. H.: ARB: a software environment for sequence data. Nucleic Acids Research 2004, vol. 25, pp. 1363-1371.
  • [35] Luo Y. R., Tian Y., Huang X., Yan C. L., Hong H. S., Lin G. H., Zheng T. L.: Analysis of community structure of a microbial consortium capable of degrading benzo(a)pyrene by DGGE. Marine Pollution bulletin 2009, vol. 58, pp. 1159-1163.
  • [36] Mao J., Luo Y., Teng Y., Li Z.: Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. International Biodeterioration & Biodegradation 2012, vol. 7, pp. 141-147.
  • [37] Miralles G., Grossi V., Acquaviva M., Duran R., Bertrand J. C., Cuny P.: Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Chemosphere 2007, vol. 68, pp. 1327-1334.
  • [38] Muehling M., Woolven-Allen J., Murrell J. C., Joint I.: Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. The ISME Journal 2008, vol. 2, pp. 379-392.
  • [39] Muyzer G., de Waal E. C., Uitterlinden A. G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 1993, vol. 59, pp. 695-700.
  • [40] Muyzer G., Smalla K.: Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient van electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 1998, vol. 73, pp. 127-141.
  • [41] Muyzer G.: DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology 1999, vol. 2, pp. 317-322.
  • [42] Nyyssoenen M., Kapanen A., Piskonen R., Lukkari T., Itaevaara M.: Functional genes reveal in the intrinsic PAH biodegradation potential in creosote-contaminated groundwater following in situ biostimulation. Applied Microbiology and Biotechnology 2009, vol. 84, pp. 169-182.
  • [43] Onda S., Hiraishi A., Matsuo Y., Takii S.: Polyphasic approaches to the identification of predominant polyphosphate-accumulating organisms in a laboratory-scale anaerobic/aerobic activated sludge system. Journal of General Applied Microbiology 2002, vol. 48, pp. 43-54.
  • [44] Paisse S., Goni-Urriza M., Coulon F., Duran R.: Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments? Applied Microbiology and Biotechnology 2011, vol. 92, pp. 835-844.
  • [45] Perez-de-Mora A., Engel M., Schloter M.: Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes. Microbial Ecology 2011, vol. 62, pp. 959-972.
  • [46] Powell S. M., Ferguson S. H., Bowman J. P., Snape I.: Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microbial Ecology 2006, vol. 52, pp. 523-532.
  • [47] Rastogi G., Sani R. K.: Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment. Microbes and Microbial Technology 2011, vol. 2, pp. 29-57.
  • [48] Rhee S. K., Liu X., Wu L., Chong S. C., Wan X., Zhou J.: Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Applied and Environmental Microbiology 2004, vol. 70, pp. 4303-4317.
  • [49] Rogers S. W., Ong S. K., Moorman T. B.: Mineralization pf PAHs in coal-tar impacted aquifer sediments and associated microbial community structure investigated with FISH. Chemosphere 2007, vol. 69, pp. 1563-1573.
  • [50] Rosano-Hernandez M. C., Ramirez-Saad H., Fernandez-Linares L.: Petroleum-influenced beach sediments of the Campeche Bank, Mexico: diversity and bacterial community Structure assessment. Journal of Environmenral Management 2012, vol. 95, pp. S325-S331.
  • [51] Said O. B., Goni-Urriza M., Bour M. E., Aissa P., Duran R.: Bacterial community structure of sediments of the Bizerte lagoon (Tunisia), a southern Mediterranean coastal anthropized lagoon. Microbial Ecology 2010, vol. 59, pp. 445-456.
  • [52] Schmidt H., Eickhorst T., Tippkoetter R.: Evaluation of tyramide solutions for an improved detection and enumeration of single microbial cells in soil by CARD-FISH. Journal of Microbiological Methods 2012, vol. 91, pp. 399-405.
  • [53] Shen F. T., Ho M. J., Huang H. R., Arun A. B., Rekha P. D., Young C.: Molecular detection and phylogenetic characterization of Gordonia species in heavy-oil contaminated soils. Research in Mircobiology 2008, vol. 159, pp. 522-529.
  • [54] Singh B. K., Campbell C. D., Sorenson S. J., Zhou J.: Soil genomics. Nature Reviews Microbiology 2009, vol. 7, p. 756.
  • [55] Steliga T., Jakubowicz P., Kapusta P.: Optimisation research of petroleum hydrocarbon biodegradation in weathered drilling wastes from waste pits. Waste Management and Research 2010, vol. 28, s. 1065-1075.
  • [56] Steliga T., Kapusta P., Jakubowicz P.: Effectiveness of bioremediation processes of hydrocarbon pollutants in weathered drill wastes. Water, Air and Soil pollution 2009, vol. 202, s. 211-228.
  • [57] Stoecker K., Dorninger C., Daims H., Wagner M.: Double labeling of oligonucleotide probes of fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Applied and Environmental Microbiology 2010, vol. 76, pp. 922-926.
  • [58] Straub K. L., Buchholz-Cleven B. E.: Enumeration and detection of anaerobic ferrous iron-oxidiing, nitrate-reducing bacteria from diverse European sediments. Applied and Environmental Microbiology 1998, vol. 64, pp. 4846-4856.
  • [59] Teira E., Lekunberri I., Gasol J. M., Nieto-Cid M., Alvarez-Salgado X. A., Figueiras F. G.: Dynamics of the hydrocarbon-degrading Cycloclasticus bacteria during mesocosm-simulated oil spills. Environmental Microbiology 2007, vol. 9, pp. 2551-2562.
  • [60] Tischer K., Zeder M., Klub R., Pernthaler J., Schattenhofer M., Harms H., Wendeberg A.: Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifier sediment samples. Systematic and Applied Microbiology 2012, vol. 35, pp. 526-532.
  • [61] Wagner M., Horn M., Daims H.: Fluorescence in situ hybridization for the identification and characterisation of prokaryotes. Current Opinion in Microbiology 2003, vol. 6, pp. 302-309.
  • [62] Wasmund K., Burns K. A., Kurtboeke D. I., Bourne D. G.: Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia. Applied and Environmental Microbiology 2009, vol. 75, pp. 7391-7398.
  • [63] Yergeau E., Arbour M., Brousseau R., Juck D., Lawrence J. R., Masson L., Whyte L. G., Greer C. W.: Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Applied and Environmental Microbiology 2012, vol. 75, pp. 6258-6267.
  • [64] Yuliani H., Sahlan M., Hermansyah H., Wijanarko A.: Selection and identification of polyaromatic hydrocarbon degrading bacteria. World Applied Sciences journal 2012, vol. 20, pp. 1133-1138.
  • [65] Zwirglmaier K., Ludwig W., Schleifer K. H.: Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization - RING-FISh. Molecular Microbiology 2004, vol. 51, pp. 89-96.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ceff3d4-0b85-4afa-a4ec-28763c276416
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.