Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Electrical Resistivity Tomography (ERT) method was applied to study a fragment of the Pieniny Klippen Belt (PKB), which has been investigated for more than 100 years. The study area is located in the Spisz Pieniny Mountains of southern Poland. The PKB in this region includes a characteristic belt of limestone outcrops. ERT turned out to be an effective method to determine the structure of this part of the PKB, revealing its zonal nature and documenting the presence of limestone olistoliths and allowing estimates of their sizes. Moreover, we show that proper planning and conducting of ERT measurements in the field is critical to the effective use of resistivity data for geological inference and interpretation. This has been demonstrated by performing appropriate numerical and analogue ERT modeling that shows possible ambiguous results arising from the field ERT survey. Awareness of this issue can help researchers avoid and minimize false interpretation of ERT data.
Czasopismo
Rocznik
Tom
Strony
art. no. 22
Opis fizyczny
Bibliogr. 56 poz., fot., rys., tab., wykr.
Twórcy
autor
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059
autor
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059
Bibliografia
- 1. Akinbiyi, O.A., Oladunjoye, M.A., Sanuade, O.A., Oyedeji, O., 2019. Geophysical characterization and hydraulic properties of unconsolidated floodplain aquifer system in Wamako area, Sokoto State, north-western Nigeria. Applied Water Science, 9: 177. https://doi.org/10.1007/s13201-019-1065-y
- 2. Andrusov, D., 1965. Geologie der tschechoslowakischen Karpaten. II. SAV, Akademie-Verlag, Bratislava, Berlin.
- 3. Antoniuk, J., Górecki, J., Mościcki, J., Szwed, E., 2005. Geofizyczne wspomaganie prac dokumentacyjnych na świętokrzyskich złożach kopalin węglanowych (in Polish). Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, 109: 3-12.
- 4. Bania, G., Ćwiklik, M., 2013. 2D Electrical Resistivity Tomography interpretation ambiguity - example of field studies supported with an analogue and numerical modelling. Geology, Geophysics and Environment, 39: 331-339. https://doi.org/10.7494/geol.2013.39.4.331
- 5. Bania, G., Woźniak, T., 2022. Subsurface imaging of fluvial deposits of the Wisła River valley in Kraków (southern Poland) by 2D ERT survey. Geological Quarterly, 66: 23. https://doi.org/10.7306/gq.1655
- 6. Birkenmajer, K., 1961. Mapa geologiczna pienińskiego pasa skałkowego, skala 1:10.000, arkusz Dursztyn (in Polish). Instytut Geologiczny, Warszawa.
- 7. Birkenmajer, K., 1977. Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica, 45: 1-158.
- 8. Birkenmajer, K., 1979. Przewodnik geologiczny po Pienińskim Pasie Skałkowym (in Polish). Wyd. Geol., Warszawa.
- 9. Birkenmajer, K., 2017. Geologia Pienin (in Polish). Monografie Pienińskie, 3: 5-66..
- 10. Chambers, J.E., Wilkinson, P.B., Wardrop, D., Hameed, A., Hill, I., Jeffrey, C., Loke, M.H., Meldrum, P.I., Kuras, O., Cave, M., Gunn, D.A., 2012. Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography. Geomorphology, 177-178: 17-25. https://doi.org/10.1016/i.geomorph.2012.03.034
- 11. Cichostępski, K., Dec, J., Golonka, J., Waśkowska, A., 2024. Shallow seismic refraction tomography images from the Pieniny Klippen Belt (Southern Poland). Minerals, 14: 155. https://doi.org/10.3390/min14020155
- 12. Csontos, L., Vörös, A., 2004. Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210: 1-56. https://doi.org/10.1016/i.palaeo.2004.02.033
- 13. Dahlin, T., 1996. 2D resistivity surveying for environmental and engineering applications. First Break, 14: 275-283.
- 14. Dahlin, T., 2001. The development of electrical imaging techniques. Computersand Geosciences, 27: 1019-1029. https://doi.org/10.1016/S0098-3004(00)00160-6
- 15. Dahlin, T., Zhou, B., 2004. A numerical comparison of 2D resistivity imaging with ten electrode arrays. Geophysical Prospecting, 52: 379-398. https://doi.org/10.1111 /i. 1365-2478.2004.00423.x
- 16. Dahlin, T., Wisén, R., Zhang, D., 2007. 3D effects on 2D resistivity imaging - modeling and field survey i ng results. Near Surface 2007 - 13th EAGE European Meeting of Environmental and Engineering Geophysics, September 2007. https://doi.org/10.3997/2214-4609.20146558
- 17. Danielsen, B.E., Dahlin, T., 2010. Numerical modelling of resolution and sensitivity of ERT in horizont al boreholes. Journal of Applied Geophysics, 70: 245-254. https://doi.org/10.1016/i.iappgeo.2010.01.005
- 18. Dortman, N.B., 1992. Petrophysics: reference. In: Three Books. Book One: Rocks and Minerals (in Russian).
- 19. Nedra, Moscow. Fox, R.C., Hohmann, G.W., Killpack, T.J., Rijo, L., 1980. Topographic effects in resistivity and induced polarization surveys. Geophysics, 45: 75-93. https://doi.org/10.1190/1.1441041
- 20. Golonka, J., Krobicki, M., 2007. Dunaiec River rafting as one of the most important geotouristic object of the future trans-bordering PIENINY Geopark. Geoturystyka. Geotourism, 3: 29-44.
- 21. Golonka, J., Krobicki, M., Waśkowska, A., Cieszkowski, M., Ślączka, A., 2015. Olistostromes of the Pieniny Klippen Belt, Northern Carpathians. Geological Magazine, 152: 269-286. https://doi.org/10.1017/S0016756814000211
- 22. Golonka, J., Pietsch, K., Marzec, P., 2018. The North European Platform suture zone in Poland. Geology, Geophysics and Environment, 44: 5-16. https://doi.org/10.7494/geol.2018.44.1.5
- 23. Golonka, J., Pietsch, K., Marzec, P., Kasperska, M., Dec, J., Cichostępski, K., Lasocki, S., 2019. Deep structure of the Pieniny Klippen Belt in Poland. Swiss Journal of Geosciences, 112: 475-506. https://doi.org/10.1007/s00015-019-00345-2
- 24. Golonka, J., Waśkowska, A., Cichostępski, K., Dec, J., Pietsch, K., Łój, M., Bania, G., Mościcki, W.J., Porzucek, S., 2022. Melange, flysch and cliffs in the Pieniny Klippen Belt (Poland): An overview. Minerals, 12; 1149. https://doi.org/10.3390/min12091149
- 25. Hellman, K., Johansson, S., Olsson, P., Dahlin, T., 2016. Resistivity inversion software comparison. 22nd European Meeting of Environmental and Engineering Geophysics, Near Surface Geoscience 2016. https://doi.org/10.3997/2214-4609.201602016
- 26. Hirsch, M., Bentley, L.R., Dietrich, P., 2008. A comparison of electrical resistivity, ground penetrating radar and seismic refraction results at a river terrace site. Journal of Environmental and Engineering Geophysics, 13: 325-333. https://doi.org/10.2113/JEEG13.4.325
- 27. Hojat, A., Ferrario, M., Arosio, D., Brunero, M., Ivanov, V.I., Longoni, L., Madaschi, A., Papini, M., Tresoldi, G., Zanzi, L., 2021. Laboratory studies using electrical resistivity tomography and fiber optic techniques to detect seepage zones in river embankments. Geosciences, 11: 69. https://doi.org/10.3390/geosciences11020069
- 28. Ikhane, P.R., Omosanya, K.O., Akinmosin, A.A., Odugbesan, A.B., 2012. Electrical Resistivity Imaging (ERI) of slope deposits and structures in some parts of Eastern Dahomey Basin. Journal of Applied Sciences, 12: 716-726. https://doi.org/10.3923/ias.2012.716.726
- 29. Kabanikhin, S., Tikhonov, N., Ivanov, V., Lavrentiev, M., 2008. Definitions and examples of inverse and ill-posed problems. Journal of Inverse and III-posed Problems, 16: 317-357.
- 30. Keller, G.V., Frischknecht, F.C., 1966. Electrical Methods in Geophysical Prospecting. Pergamon Press, Oxford, New York. International Series of Monographs in Electromagnetic Waves, 10.
- 31. Kobranova, V.N., 1989. Petrophysics. Mir Publishers, Springer, Moscow, Berlin.
- 32. Kondracki, J., 2001. Geografia Regionalna Polski (in Polish). PWN, Warsaw.
- 33. Książkiewicz, M., 1977. Tectonics of the Carpathians. In: Geology of Poland, 4, Tectonics (ed. W. Pożaryski): 476-604. Wyd. Geol., Warszawa.
- 34. Loke, M.H., 2000. Topographic modelling in resistivity imaging inversion. 62nd EAGE Conference and Technical Exhibition Extended Abstracts, D-2. http://www.geotomosoft.com/topoabs.pdf
- 35. Loke, M.H., 2012. Tutorial: 2-D and 3-D Electrical Imaging Surveys. Geotomo Software, Malaysia. http://refhub.elsevier.com/S0926-9851 (18)31023-1 /rf0365
- 36. Loke, M.H., Ackworth, I., Dahlin, T., 2003. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34: 182-187. https://doi.org/10.1071/EG03182
- 37. Loke, M.H., Chambers, J.E., Rucher, D.F., Kuras, O., Wilkinson, P.B., 2013. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95: 135-156. https://doi.org/10.1016/i.iappgeo.2013.02.017
- 38. Lu, D.B., Zhou, Q.Y., Junejo, S.A., Xiao, A.L., 2015. A systematic study of topography effect of ERT based on 3-D modeling and inversion. Pure and Applied Geophysics, 172: 1531-1546. https://doi.org/10.1007/s00024-014-1015-4
- 39. Ludwiniak, M., 2010. Multi-stage development of the joint network in the flysch rocks of western Podhale (Inner Western Carpathians, Pol and). Acta Geologica Polonica, 60: 283-316.
- 40. McNeill, D.J., 1980. Elect rical Conductivity of Soils and Rocks. Geonics Limited, Technical Note TN-5, Ontario, Canada.
- 41. Metwaly, M., AlFouzan, F., 2013. Application of 2-D geoelectrical resistivity tomography for subsurface cavity detection in the eastern part of Saudi Arabia. Geoscience Frontiers, 4: 469-476. https://doi.org/10.1016/j.gsf.2012.12.005
- 42. Mościcki, W.J., 2008. 2D resistivty imaging of an anisotropic 3D body - results of a laboratory experiment. Near Surface 2008, 14th European, Meeting of Environmental and Engineering Geophysics, 15-17 September 2008, Kraków, Poland. EAGE 2008, Extended Abstracts and Exhibitors' Catalogue, P23.
- 43. Mościcki, W.J., Bania, G., Ćwiklik, M., Borecka, A., 2014. DC resistivity studies of shallow geology in the vicinity of Vistula River flood bank in Czernichów village (near Krakow in Poland). Studia Geotechnica et Mechanica, 36: 63-70. https://doi.org/10.2478/sgem-2014-0008
- 44. Neumayr, M., 1871. Jurastudien. Der penninische Klippenzug. Jahrbuch der Kaiserlich-Königlichen Geologischen Reichanstalt, 21: 451-536.
- 45. Nur Amalina, M.K.A., Nordiana, M.M., Bery, A.A., Bin Anuar, M.N.A., Maslinda, U., Sulaiman, N., Saharudin, M.A., His- ham, H., Nordiana, A.N., Taqiuddin, Z.M., 2017. Application of 2-D resistivity imaging and seismic refraction method in identifying the structural geological contact of sedimentary lithologies. IOP Conference Series: Earth and Environmental Science, 62: 012005. https://doi.org/10.1088/1755-1315/62/1 /012005
- 46. Plašienka, D., Aubrecht, R., Bezák, V., Bielik, M., Broska, I., Bučová, J., Fekete, K., Gaži, P., Gedl, P., Golej, M., Halásová, E., Hók, J., Hrdlička, M., Jamrich, M., Józsa, Š., Klanica, R., Konečný, P., Kubiš M., Madarás, J., Majcin, D., Marko, F., Molčan Matejová, M., Potočný, T., Schlögl, J., Soták, J., Suan, G., Šamajová, L., Šimonová, V., Teťák, F., Vozár, J., 2021. Structure, composition and tectonic evolution of the Pieniny Klippen Belt - Central Western Carpathian contiguous zone (Kysuce and Orava regions, NW Slovakia). Comenius University Bratislava, 148.
- 47. Sikora, W., 1971. Esquisse de la tectogéněse de la zone des Klippes des Pieniny en Pologne d'apres de nouvelles données géologiques. Rocznik Polskiego Towarzystwa Geologicznego, 41: 221-239.
- 48. Šilhán, K., Pánek, T., 2010. Fossil and recent debris flows in medium-high mountains (Moravskoslezské Beskydy Mts., Czech Republic). Geomorphology, 124: 238-249. https://doi.org/10.1016/i.geomorph.2010.03.026
- 49. Sjödahl, P., Dahlin, T., Zhou, B., 2006. 2.5D resistivity modeling of embankment dams to assess influence from geometry and material properties. Geophysics, 71: G107-G114. https://doi.org/10.1190/1.2198217
- 50. Szalai, S., Szokoli, K., Pracser, E., Metwaly, M., Zubair, M., Szarka, L., 2020. An alternative way in electrical resistivity prospection: the quasi-null arrays. Geophysical Journal International, 220: 1463-1480. https://doi.org/10.1093/gii/ggz518
- 51. Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics. Cambridge University Press.
- 52. Watycha, L., 1964. Szczegółowa Mapa Geologiczna Polski 1:50.000 (bez utworów czwartorzędowych). Rejon Karpat i Przedgórza, arkusz Nowy Targ (in Polish). Wyd. Geol., Warszawa.
- 53. Watycha, L., 1975. Szczegółowa Mapa Geologiczna Polski 1:50 000, arkusz Nowy Targ (in Polish). Wyd. Geol., Warszawa.
- 54. Woźniak, T., Bania, G., 2019a. Analysis of the tectonic and sediment ary feat ures of the southern margin of the Krzeszowice Graben in Southern Poland based on an integrated geoelectrical and geological studies. Journal of Applied Geophysics, 165: 60-76. https://doi.org/10.1016/i.iappgeo.2019.04.010
- 55. Woźniak, T., Bania, G., 2019b. Integrated geoelectrical and geological data sets for shallow structure characterization of the southern margin of the Krzeszowice Graben (Southern Poland). Data in Brief, 25: 104157. https://doi.org/10.1016/i.dib.2019.104157
- 56. Woźniak, T., Bania, G., Mościcki, J.W., Ćwiklik, M., 2018. Electrical resistivity tomography (ERT) and sedimentological analysis applied to investigation of Upper Jurassic limestones from the Krzeszowice Graben (Kraków Upland, southern Poland). Geological Quarterly, 62: 287-302. https://doi.org/10.7306/gq.1403
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cedc68c-0f63-47e0-920a-4e0a5d173285
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.