PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determining the Environmental Impact of Cradle to Gate in Coal-Fired Power Generation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis of environmental impacts throughout the entire process of coal-fired power plants is imperative to implement effective measures for controlling and reducing pollutant emissions. However, there is still limited research focusing on the cradle-to-gate stage in the life cycle of coal-fired power plants and their environmental impact. This study employs a life cycle assessment (LCA) methodology to assess the environmental impacts of coal-fired power plants in South Sumatra. The primary environmental impact categories of primary emissions include CO2, SO2, NOx, and CH4. The most significant environmental impacts arise from CO2 emissions, notably 98.46% from land clearing and preparation and 86.74% from overburden removal and coal extraction. These stages primarily contribute to global warming throughout the cradle-to-gate process. Sulfur dioxide emissions from land clearing activities are the main contributor to acid rain, followed by overburden removal and coal extraction (96.51%) and coal stockpiling (1.48%), which also play a role. The release of NOx from land clearing and preparation, overburden removal, and coal stockpiling contributes to the potential for eutrophication. Land clearing and preparation have a significant impact on global warming during the coal mining and distribution stages. Practical measures such as enhancing emission reduction facilities and increasing pollutant emission standards for each process are necessary to promote environmentally friendly coal-fired power plants.
Twórcy
  • Environmental Management Department, Graduate School, Universitas Sriwijaya, Jl. Padang Selasa No. 524 Bukit Besar, Palembang, South Sumatera, Indonesia
  • Civil Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
Bibliografia
  • 1. Cao, X., Chen, S., Xiang, W. Life cycle assessment of post-combustion carbon capture and storage for the ultra-supercritical pulverized coal power plant. Science of the Total Environment, 2024; 927(March): 172047. https://doi.org/10.1016/j. scitotenv.2024.172047
  • 2. Damanik, M.Q.A., Karlinasari, L., Hanafi, J. Life cycle assesment (LCA) cradle to gate produksi batu bara di PT XYZ Kalimantan Selatan. Institut Pertanian Bogor, 2021.
  • 3. Do, T.N., Burke, P.J. 2024. Phasing out coal power in two major Southeast Asian thermal coal economies: Indonesia and Vietnam. Energy for Sustainable Development, 80(January), 101451. https://doi. org/10.1016/j.esd.2024.101451
  • 4. Dong, Y., Jiang, X., Liang, Z., Yuan, J. Coal power flexibility, energy efficiency and pollutant emissions implications in China: A plant-level analysis based on case units. Resources, Conservation and Recycling, 2018; 134(February): 184–195. https://doi. org/10.1016/j.resconrec.2018.03.012
  • 5. Dunmade, I., Madushele, N., Adedeji, P.A., Akinlabi, E.T. 2019. A streamlined life cycle assessment of a coal-fired power plant: the South African case study. Environmental Science and Pollution Research, 26(18), 18484–18492. https://doi. org/10.1007/s11356-019-05227-6
  • 6. Gaete-Morales, C., Gallego-Schmid, A., Stamford, L., Azapagic, A. Life cycle environmental impacts of electricity from fossil fuels in Chile over a ten-year period. Journal of Cleaner Production, 2019; 232: 1499–1512. https://doi.org/10.1016/j. jclepro.2019.05.374
  • 7. Gashaw, A., Gatechew, T., Tesitha, A. A Review on biodiesel production as alternative fuel. Journal of Forest Products & Industries, 2015; 4(2): 80–85.
  • 8. Lau, H.C. The Contribution of Carbon Capture and Storage to the Decarbonization of Coal-Fired Power Plants in Selected Asian Countries. Energy and Fuels, 2023; 37(20): 15919–15934. https://doi. org/10.1021/acs.energyfuels.3c02648
  • 9. Li, H., Jiang, H.-D., Dong, K.-Y., Wei, Y.-M., Liao, H. A comparative analysis of the life cycle environmental emissions from wind and coal power: Evidence from China. Journal of Cleaner Production, 2020; 248: 119192. https://doi.org/10.1016/j. jclepro.2019.119192
  • 10. Malode, S., Prakash, R., Mohanta, J.C. A life cycle assessment of coal-fired thermal power plants with post-combustion control techniques: an India scenario. Environmental Science and Pollution Research, 2023; 30(39): 90639–90655. https://doi. org/10.1007/s11356-023-28447-3
  • 11. Martín-Gamboa, M., Iribarren, D., Dufour, J. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach. Science of the Total Environment, 2018; 615: 29–37. https://doi.org/10.1016/j. scitotenv.2017.09.243
  • 12. Ministry of Environment and Forestry. Regulation of the Minister of Environment and Forestry of the Republic of Indonesia, 2021; 1. In Kementrian LHK RI.
  • 13. Nugraheni, D.T., Purwana, R., Hamzah, U.S. Jurnal Presipitasi Implementation at X Steam Power Plant, West Java. Jurnal Presipitasi, 2023; 20(2): 334–344.
  • 14. Octova, A., Indra, R.T. Analisis konsumsi bahan bakar dump truck Nissan UD CWM 330 pada penambangan batubara di PT. Nan Riang. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 2019; 19(2): 103–114. https://doi.org/10.24036/invotek.v19i2.550
  • 15. Petrescu, L., Bonalumi, D., Valenti, G., Cormos, A.M., Cormos, C.C. Life Cycle Assessment for su- percritical pulverized coal power plants with postcombustion carbon capture and storage. Journal of Cleaner Production, 2017; 157: 10–21. https://doi. org/10.1016/j.jclepro.2017.03.225
  • 16. Rahn, A., Schuch, M., Wicke, K., Sprecher, B., Dransfeld, C., Wende, G. Beyond flight operations: Assessing the environmental impact of aircraft maintenance through Life Cycle Assessment. Journal of Cleaner Production, 2024; 453(March): 142195. https://doi.org/10.1016/j.jclepro.2024.142195
  • 17. Rasheed, R., Javed, H., Rizwan, A., Sharif, F., Yasar, A., Tabinda, A.B., Ahmad, S.R., Wang, Y., Su, Y. 2021. Life cycle assessment of a cleaner super-critical coal-fired power plant. Journal of Cleaner Production, 279, 123869. https://doi.org/10.1016/j. jclepro.2020.123869
  • 18. Rasheed, R., Yasar, A., Wang, Y., Tabinda, A.B., Ahmad, S.R., Tahir, F., Su, Y. Environmental impact and economic sustainability analysis of a novel anaerobic digestion waste-to-energy pilot plant in Pakistan. Environmental Science and Pollution Research, 2019; 26(25): 26404–26417. https://doi. org/10.1007/s11356-019-05902-8
  • 19. Reyseliani, N., Purwanto, W.W. Pathway towards 100% renewable energy in Indonesia power system by 2050. Renewable Energy, 2021; 176: 305–321. https://doi.org/10.1016/j.renene.2021.05.118
  • 20. Roychoudhury, S., Khanda, D. Application of life cycle assessment (LCA) IN. Conference Paper : The Mining Geological and Metallurgical Institute of India (MGMI) APPLICATION, March, 2016; 357–365.
  • 21. Wang, J., Wang, R., Zhu, Y., Li, J. Life cycle assessment and environmental cost accounting of coal-fired power generation in China. Energy Policy, 2018; 115(January): 374–384. https://doi. org/10.1016/j.enpol.2018.01.040
  • 22. Wang, P., Yang, M., Mamaril, K., Shi, X., Cheng, B., Zhao, D. Explaining the slow progress of coal phase-out: The case of Guangdong-Hong Kong-Macao Greater Bay Region. Energy Policy, 2021; 155(July 2020): 112331. https://doi.org/10.1016/j. enpol.2021.112331
  • 23. Wang, Y., Pan, Z., Zhang, W., Borhani, T.N., Li, R., Zhang, Z. Life cycle assessment of combustionbased electricity generation technologies integrated with carbon capture and storage: A review. Environ- mental Research, 2022; 207(October 2021), 112219. https://doi.org/10.1016/j.envres.2021.112219
  • 24. Wu, H., Wang, Q., Xu, Y., Ye, Y., Zeng, X. Coal life-cycle analysis embedded with land–Energy nexus of a coal-based city in China. Resources, Environment and Sustainability, 2023; 12(December 2022), 100109. https://doi.org/10.1016/j. resenv.2023.100109
  • 25. Zhang, B., Niu, N., Li, H., Wang, Z. Assessing the efforts of coal phaseout for carbon neutrality in China. Applied Energy, 2023; 352(May): 121924. https://doi.org/10.1016/j.apenergy.2023.121924
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ced5386-9f47-42be-ac18-a615988c6461
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.