PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of Multifunctional Nano Gelatin/Zinc Oxide Composite Fibers

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
According to health studies, reinforcing gelatin is necessary in order to obtain the multifunctional material. In this study, nano zinc oxide (ZnO; at concentrations of 0.5%, 1% and 1.5%) was doped with gelatin and the solution was electrospun under specific conditions to obtain multifunctional gelatin/ZnO nanofibers. The morphology of the nanofibers was studied by field emission scanning electron microscope (FESEM), and energy-dispersive X-ray spectrometry (EDX) analysis indicated the presence of nano Zn on the surface of gelatin fibers. On the contrary, elemental mapping analysis proved the distribution of nano material along the nano gelatin fibers. The results show that the produced nano gelatin/ZnO composite increases the ultraviolet (UV) blocking of fabric significantly. It is also observed that electrospun gelatin/ZnO nanofibers have excellent bactericidal property against both Bacillus cereus (Gram-positive) and Escherichia coli (Gram-negative) bacteria.
Rocznik
Strony
403--407
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • Department of Management, Yazd Branch, Islamic Azad University, Yazd, Iran
  • Department of Management, Yazd Branch, Islamic Azad University, Yazd, Iran
  • Department of Design and Clothing, Yazd Branch, Islamic Azad University, Yazd, Iran
  • Department of Management, Yazd Branch, Islamic Azad University, Yazd, Iran
Bibliografia
  • [1] Wang, Q.-Q., Liu, Y., Zhang, C.-J., Zhang, C., Zhu, P. (2019). Alginate/gelatin blended hydrogel fibers cross-linked by Ca2+ and oxidized starch: Preparation and properties. Materials Science and Engineering: C, 99, 1469–1476.
  • [2] Kwak, H. W., Kim, J. E., Lee, K. H. (2019). Green fabrication of antibacterial gelatin fiber for biomedical application. Reactive and Functional Polymers, 136, 86–94.
  • [3] Yang, X., Yang, D., Zhu, X., Nie, J., Ma, G. (2019). Electrospun and photocrosslinked gelatin/dextran–maleic anhydride composite fibers for tissue engineering. European Polymer Journal, 113, 142–147.
  • [4] Sghayyar, H. N. M., Lim, S. S., Ahmed, I., Lai, J. Y., Cheong, X. Y., et al. (2020). Fish biowaste gelatin coated phosphate-glass fibres for wound-healing application. European Polymer Journal, 122, 109386.
  • [5] Topuz, F., Uyar, T. (2017). Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon. Materials Science and Engineering: C, 80, 371–378.
  • [6] Cao, M., Zhou, Y., Mao, J., Wei, P., Chen, D., et al. (2019). Promoting osteogenic differentiation of BMSCs via mineralization of polylactide/gelatin composite fibers in cell culture medium. Materials Science and Engineering: C, 100, 862–873.
  • [7] Niu, Y., Fang, H., Huo, T., Sun, X., Gong, Q., et al. (2020). A novel fat replacer composed by gelatin and soluble dietary fibers from black bean coats with its application in meatballs. LWT, 122, 109000.
  • [8] Li, L., Wang, H., Chen, M., Jiang, S., Cheng, J., et al. (2020). Gelatin/zein fiber mats encapsulated with resveratrol: Kinetics, antibacterial activity and application for pork preservation. Food Hydrocolloids, 101, 105577.
  • [9] Painuly, D., Nisha, U., Arya, S., Sangeeth Krishnan, J. B. (2019). Effect on in-vitro release of individual and dual contraceptive drug loading from gelatin electrospun fibers. Journal of Drug Delivery Science and Technology, 51, 454–463.
  • [10] Ranganathan, S., Balagangadharan, K., Selvamurugan, N. (2019). Chitosan and gelatin-based electrospun fibers for bone tissue engineering. International Journal of Biological Macromolecules, 133, 354–364.
  • [11] Kinoda, J., Ishihara, M., Hattori, H., Nakamura, S., Fukuda, K., et al. (2016). Cytotoxicity of silver nanoparticle and chitin-nanofiber sheet composites caused by oxidative stress. Nanomaterials, 6, 189.
  • [12] Martin, J. R., Borchardt, L., Oschatz, M., Mondin, G., Kaskel, S. (2013). Titanium carbide and carbide-derived carbon composite nanofibers by electrospinning of ti-resin precursor. Chemie Ingenieur Technik, 85(11), 1742–1748.
  • [13] Kim, K., Shim, H., Kim, J. (2016). Fiber formation model for electrospinning. II. Stable jet voltage. Fibers and Polymers, 17(10), 1634–1640.
  • [14] Liu, C.-K., Lai, K., Liu, W., Yao, M., Sun, R.-J. (2009). Preparation of carbon nanofibres through electrospinning and thermal treatment. Polymer International, 58(12), 1341–1349.
  • [15] Zohoori, S., Latifi, M., Davodiroknabadi, A., Mirjalili, M. (2017). Vibration electrospinning of polyamide-66/multiwall carbon nanotube nanocomposite: Introducing electrically conductive, ultraviolet blocking and antibacterial properties. Polish Journal of Chemical Technology, 19(3).
  • [16] Karimi, L., Zohoori, S., Ayaziyazdi, S. (2013). A novel durable photoactive nylon fabric using electrospun nanofibers containing nanophotocatalysts. Journal of Industrial and Engineering Chemistry, 20(5).
  • [17] Ayaziyazdi, S., Zohoori, S., Davodiroknabadi, A., Karimnejad, M. (2013). Electrospinning of polyamide fiber containing nano TiO2 and the effect of heat, setting on self-cleaning. Oriental Journal of Chemistry, 29, 427–431.
  • [18] Mirjalili, M., Zohoori, S. (2016). Review for application of electrospinning and electrospun nanofibers technology in textile industry. Journal of Nanostructure in Chemistry, 6(3), 207–213.
  • [19] Kimmer, D., Slobodian, P., Petráš, D., Zatloukal, M., Olejník, R., et al. (2009). Polyurethane/multiwalled carbon nanotube nanowebs prepared by an electrospinning process. Journal of Applied Polymer Science, 111(6), 2711–2714.
  • [20] Huang, C.-K., Zhang, K., Gong, Q., Yu, D.-G., Wang, J., et al. (2020). Ethylcellulose-based drug nano depots fabricated using a modified triaxial electrospinning. International Journal of Biological Macromolecules, 152, 68–76.
  • [21] Fazli-Abukheyli, R., Rahimi, M. R., Ghaedi, M. (2019). Electrospinning coating of nanoporous anodic alumina for controlling the drug release: Drug release study and modeling. Journal of Drug Delivery Science and Technology, 54, 101247.
  • [22] Qin, Z.-Y., Jia, X.-W., Liu, Q., Kong, B.-H., Wang, H. (2019). Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. International Journal of Biological Macromolecules, 137, 224–231.
  • [23] Yan, Y., Mi, W., Zhao, J., Yang, Z., Zhang, K., et al. (2018). Study of the metal-semiconductor contact to ZnO films. Vacuum, 155, 210–213.
  • [24] Jung, H. J., Koutavarapu, R., Lee, S., Kim, J. H., Choi, H. C., et al. (2018). Enhanced photocatalytic degradation of lindane using metal–semiconductor Zn@ZnO and ZnO/Ag nanostructures. Journal of Environmental Sciences, 74, 107–115.
  • [25] Gao, D., Lyu, L., Lyu, B., Ma, J., Yang, L., et al. (2017). Multifunctional cotton fabric loaded with Ce doped ZnO nanorods. Materials Research Bulletin, 89, 102–107.
  • [26] Gao, D., Zhang, J., Lyu, B., Lyu, L., Ma, J., et al. (2018). Poly(quaternary ammonium salt-epoxy) grafted onto Ce doped ZnO composite: An enhanced and durable antibacterial agent. Carbohydrate Polymers, 200, 221–228.
  • [27] Bekrani, M., Zohoori, S., Davodiroknabadi, A. (2019). Producing multifunctional cotton fabrics using nano CeO2 doped with nano TiO2 and ZnO. Autex Research Journal, 20(1).
  • [28] Zohoori, S., Karimi, L., Nazari, A. (2014). Photocatalytic self-cleaning synergism optimization of cotton fabric using nano SrTiO3 and nano TiO2. Fibres and Textiles in Eastern Europe, 22, 91–95.
  • [29] Perelshtein, I., Applerot, G., Perkas, N., Wehrschetz-Sigl, E., Hasmann, A., et al. (2009). Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Applied Materials & Interfaces, 1(2), 361–366.
  • [30] Ali, M. Y., Khan, M.K.R., TanveerKarim, A.M.M., Mozibur Rahman, M., Kamruzzaman, M. (2020). Effect of Ni doping on structure, morphology and opto-transport properties of spray pyrolised ZnO nano-fiber. Heliyon, 6(3), e03588.
  • [31] Thangavel, K., Balamurugan, A., Venkatachalam, T., Ranjith Kumar, E. (2016). Structural, morphological and optical properties of ZnO nano-fibers. Superlattices and Microstructures, 90, 45–52.
  • [32] Thakur, S., Kaur, M., Lim, W. F., Lal, M. (2020). Fabrication and characterization of electrospun ZnO nanofibers; antimicrobial assessment. Materials Letters, 264, 127279.
  • [33] Erencia, M., Cano, F., Tornero, J. A., Fernandes, M. M., Tzanov, T., et al. (2015). Electrospinning of gelatin fibers using solutions with low acetic acid concentration: Effect of solvent composition on both diameter of electrospun fibers and cytotoxicity. Journal of Applied Polymer Science, 132(25).
  • [34] Salles, T. H. C., Lombello, C. B., d’Ávila, M. A. (2015). Electrospinning of gelatin/poly (vinyl pyrrolidone) blends from water/acetic acid solutions. Materials Research, 18, 509–518.
  • [35] Choktaweesap, N., Arayanarakul, K., Aht-Ong, D., Meechaisue, Y., Supaphol, P. (2007). Electrospun gelatin fibers: Effect of solvent system on morphology and fiber diameters. Polymer Journal, 39, 622–631.
  • [36] Al-Khatib, M. S., Khyami-Horani, H., Badran, E., Shehabi, A. A. (2007). Incidence and characterization of diarrheal enterotoxins of fecal Bacillus cereus isolates associated with diarrhea. Diagnostic Microbiology and Infectious Disease, 59(4), 383–387.
  • [37] Ormsby, M. J., Johnson, S. A., Carpena, N., Meikle, L. M., Goldstone, R. J., et al. (2020). Propionic acid promotes the virulent phenotype of Crohn's disease-associated adherent-invasive Escherichia coli. Cell Reports, 30(7), 2297–2305.e5.
  • [38] Wang, M., Zhang, M.. Zhang, M., Aizezi, M., Zhang, Y., et al. (2019). In-situ mineralized robust polysiloxane–Ag@ZnO on cotton for enhanced photocatalytic and antibacterial activities. Carbohydrate Polymers, 217, 15–25.
  • [39] Rao, K. M., Suneetha, M., Park, G. T., Babu, A. G., Han, S. S. (2020). Hemostatic, biocompatible, and antibacterial non-animal fungal mushroom-based carboxymethyl chitosan-ZnO nanocomposite for wound-healing applications. International Journal of Biological Macromolecules, 155, 71–80.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ced0412-f939-4d90-b6b5-824567895b58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.