PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identifying Climatic Change Adaptations of Crops in Orinoco Basin Oxisols Through Study of Soil Water Availability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Crop yield variations in the Orinoquía region – Colombia, are primarily associated with extreme precipitation events. Therefore, studying crop water supplies under naturally variable climate conditions is fundamental in an actual climatic change context. Rainfall data collected in the Quenane sub-basin were analyzed to understand the soil water dynamics in the Orinoco catchment. The basin covers 179 km2 and consists of the piedmont landscape (Eastern Mountain Range) of the Villavicencio Municipality, Department of Meta. This study analyzes the rainfall variability using Pearson correlation analysis, the Mann-Kendall trend analysis, and soil water balance to determine the implications of these factors in crop performance at the basin scale. The results indicated that the spatial distribution of rainfall in the basin responds to a longitudinal average variation of precipitation and that this response is more accentuated (i.e., greater rainfall) toward the west of the basin. Despite the basin being located in the tropical zone, no evidence was found regarding the effect of the El Niño Southern Oscillation on rainfall patterns. Yet, the temporal analysis revealed some years with extreme rainfall values and high-uncertainty levels during transitions between wet and dry periods. During these transition periods, a greater potential for effects on farm yields exists due to the variable cumulative rainfall observed during recent years. The time series trend analysis revealed changes in rainfall patterns at different scales (weekly and yearly) and distribution based on the decrease of rainy days per week and year. This trend is much more accentuated during the second half of the year, generating uncertainty and reducing farm yields throughout the basin.
Rocznik
Strony
114--133
Opis fizyczny
Bibliogr. 82 poz., rys., tab.
Twórcy
  • Network of Annual and Agro-Industrial Crops, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), La Libertad, Villavicencio, Meta, Colombia
  • Departamento de Geociencias y Medioambiente, Sede Medellín, Facultad de Minas, Universidad Nacional de Colombia, Carrera 80 No 65-223, Bloque M2. Office 312, Campus Robledo, 050036, Medellín, Colombia
  • Intelligence Analyst and Scientific and Technological Dissemination, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Bogotá DC, Colombia
  • Network of Annual and Agro-Industrial Crops, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), La Libertad, Villavicencio, Meta, Colombia
  • Network of Annual and Agro-Industrial Crops, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), La Libertad, Villavicencio, Meta, Colombia
Bibliografia
  • 1. Alan, A.T.M., Rahman, M.S., Sadaat, A.H.M. (2014). Markov Chain Analysis of Weekly Rainfall Data for Predicting Agricultural Drought. In Computational Intelligence Techniques in Earth and Environmental Sciences, 109–128. https://doi.org/10.1007/978-94-017-8642-3_6
  • 2. Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). Crop evapotranspiration, Guides for determining crop water requirements. (Evapotranspiración del cultivo, Guías para la determinación de los requerimientos de agua de los cultivos). FAO - Food and Agriculture Organization of the United Nations, 56. https://www.fao.org/3/x0490s/x0490s.pdf
  • 3. Anda, A., Simon, B., Soos, G., Teixeira da Silva, J.A., Farkas, Z., Menyhart, L. (2020). Assessment of Soybean Evapotranspiration and Controlled Water Stress Using Traditional and Converted Evapotranspirometers. Atmosphere, 11(8), 830. https://doi.org/10.3390/atmos11080830
  • 4. Arias, P.A., Ortega, G., Villegas, L. D., Martínez, J.A. (2021). Colombian climatology in CMIP5/CMIP6 models: Persistent biases and improvements. Revista Facultad de Ingeniería Universidad de Antioquia. https://doi.org/10.17533/udea.redin.20210525
  • 5. Armenteras, D., Meza, M. C., González, T. M., Oliveras, I., Balch, J. K., Retana, J. (2021). Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 12(1). https://doi.org/10.1002/ecs2.3347
  • 6. Arrieta-Pastrana, A., Saba, M., Puello Alcázar, A. (2023). Analysis of Climate Variability and Climate Change in Sub-Daily Maximum Intensities: A Case Study in Cartagena, Colombia. Atmosphere, 14(1), 146. https://doi.org/10.3390/atmos14010146
  • 7. Attanasio, A., Pasini, A., Triacca, U. (2013). Granger Causality Analyses for Climatic Attribution. Atmospheric and Climate Sciences, 3(4), 515–522. https://doi.org/10.4236/acs.2013.34054
  • 8. Beloni, T., Santos, P.M., Rovadoscki, G.A., Balachowski, J., Volaire, F. (2018). Large variability in drought survival among Urochloa spp. cultivars. Grass and Forage Science, 73(4), 947–957. https://doi.org/10.1111/gfs.12380
  • 9. Bera, B., Shit, P.K., Sengupta, N., Saha, S., Bhattacharjee, S. (2021). Trends and variability of drought in the extended part of Chhota Nagpur plateau (Singbhum Protocontinent), India applying SPI and SPEI indices. Environmental Challenges, 5(September), 100310. https://doi.org/10.1016/j.envc.2021.100310
  • 10. Bernal, J., Peña, A., Díaz, N., Obando, D. (2013). Climatic conditions of the Colombian flat plateau in the context of climate change (Condiciones climáticas de la altillanura plana colombiana en el contexto de cambio climático). In E. Amézquita, I. Rao, M. Rivera, I. Corrales, J. Bernal (Eds.), Sistemas agropastoriles: Un enfoque integrado para el manejo sostenible de oxisoles de los Llanos Orientales de Colombia . Centro Internacional de Agricultura Tropical (CIAT) Ministerio de Agricultura y Desarrollo Rural (MADR) Corporación Colombiana de, 14–28.
  • 11. Brêda, J.P.L.F., de Paiva, R.C.D., Collischon, W., Bravo, J.M., Siqueira, V.A., Steinke, E.B. (2020). Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Climatic Change, 159(4), 503–522. https://doi.org/10.1007/s10584-020-02667-9
  • 12. Bustamante, C. (2019). Great Book of the Colombian Orinoquia (Gran Libro de la Orinoquia Colombiana). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt-Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. http://repository.humboldt.org.co/ handle/20.500.11761/35408
  • 13. Chica, H., Quiñones, A.J.P., Jiménez, J.F.G., Bonilla, D.O., Herrera, N.M.R. (2014). SueMulador: Tool for the Simulation of Missing Data in Daily Climate Series of Equatorial Zones. Revista Facultad Nacional de Agronomía Medellín, 67(2), 7365–7373. https://doi.org/10.15446/rfnam.v67n2.44179
  • 14. Chica Ramirez, H.A., Gómez Gil, L.F., Bravo Bastidas, J.J., Carbonell González, J.A., Peña Quiñones, A.J. (2021). Site-specific intra-annual rainfall patterns: a tool for agricultural planning in the Colombian sugarcane production zone. Theoretical and Applied Climatology, 146(1–2), 543–554. https://doi.org/10.1007/s00704-021-03755-1
  • 15. Chisanga, C.B., Nkonde, E., Phiri, E., Mubanga, K.H., Lwando, C. (2023). Trend analysis of rainfall from 1981-2022 over Zambia. Heliyon, 9(11), e22345. https://doi.org/10.1016/j.heliyon.2023.e22345
  • 16. Cui, X. (2020). Climate change and adaptation in agriculture: Evidence from US cropping patterns. Journal of Environmental Economics and Management, 101, 102306. https://doi.org/10.1016/j.jeem.2020.102306
  • 17. da Silva, E.H.F.M., Gonçalves, A.O., Pereira, R.A., Fattori Júnior, I.M., Sobenko, L.R., Marin, F.R. (2019). Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil. Agricultural Water Management, 218(October 2018), 1–7. https://doi.org/10.1016/j.agwat.2019.03.003
  • 18. Das, D.P., Kothari, K., Pandey, A. (2024). Comprehensive analysis of spatiotemporal variability of rainfall-based extremes and their implications on agriculture in the Upper Ganga Command Area. Environmental Monitoring and Assessment, 196(2), 111. https://doi.org/10.1007/s10661-023-12265-8
  • 19. Dastane, N.G. (1978). Effective rainfall in irrigated agriculture. FAO Irrigation and Drainage Engineering, 4(1), 25. https://www.fao.org/3/X5560E/ X5560E00.htm
  • 20. de Boer‐Euser, T., McMillan, H.K., Hrachowitz, M., Winsemius, H.C., Savenije, H.H.G. (2016). Influence of soil and climate on root zone storage capacity. Water Resources Research, 52(3), 2009–2024. https://doi.org/10.1002/2015WR018115
  • 21. de Oliveira, R.L.L., Vasconcelos, S.S., Teixeira, W.G., Viana-Junior, A.B., Castellani, D.C., Kato, O.R. (2022). Management Practices Affect Soil Carbon and Physical Quality in Oil Palm Agroforestry Systems in the Amazon. Journal of Soil Science and Plant Nutrition, 22(4), 4653–4668. https://doi.org/10.1007/s42729-022-00947-0
  • 22. de Oliveira-Júnior, J.F., Mendes, D., Luiz, F.C.F.W., da Silva Junior, C.A., de Gois, G., da Rosa Ferraz Jardim, A.M., da Silva, M.V., Lyra, G.B., Teodoro, P.E., Pimentel, L.C.G., Lima, M., de Barros Sant, D., Rogelio, J.P. (2021). Fire foci in South America: Impact and causes, fire hazard and future scenarios José. Journal of South American Earth Sciences, 1446(89), 2669. https://doi.org/10.1016/j.jsames.2021.103623
  • 23. Delerce, S., Dorado, H., Grillon, A., Rebolledo, M.C., Prager, S.D., Patiño, V.H., Varón, G.G., Jiménez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS ONE, 11(8). https://doi.org/10.1371/journal.pone.0161620
  • 24. Duran-Bautista, E.H., Angel-Sanchez, Y.K., Bermúdez, M.F., Suárez, J.C. (2023). Agroforestry systems generate changes in soil macrofauna and soil physical quality relationship in the northwestern Colombian Amazon. Agroforestry Systems, 97(5), 927938. https://doi.org/10.1007/s10457-023-00838-y
  • 25. Egerer, S., Cotera, R.V., Celliers, L., Costa, M.M. (2021). A leverage points analysis of a qualitative system dynamics model for climate change adaptation in agriculture. Agricultural Systems, 189(February 2020). https://doi.org/10.1016/j.agsy.2021.103052
  • 26. Espinoza, J.C., Garreaud, R., Poveda, G., Arias, P.A., Molina-Carpio, J., Masiokas, M., Viale, M., Scaff, L. (2020). Hydroclimate of the Andes Part I: Main Climatic Features. Frontiers in Earth Science, 8(March), 1–20. https://doi.org/10.3389/feart.2020.00064
  • 27. Esquivel, A., Llanos-Herrera, L., Agudelo, D., Prager, S.D., Fernandes, K., Rojas, A., Valencia, J.J., Ramirez-Villegas, J. (2018). Predictability of seasonal precipitation across major crop growing areas in Colombia. Climate Services, 12(September), 36–47. https://doi.org/10.1016/j.cliser.2018.09.001
  • 28. Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., Huang, J. (2017). Crop production under drought and heat stress: Plant responses and management options. In Frontiers in Plant Science (8). Frontiers Media S.A. https://doi.org/10.3389/ fpls.2017.01147
  • 29. Fontanilla-Díaz, C.A., Preckel, P.V, LowenbergDeBoer, J., Sanders, J., Peña-Lévano, L.M. (2021). Identifying profitable activities on the frontier: The Altillanura of Colombia. Agricultural Systems, 192(May). https://doi.org/10.1016/j.agsy.2021.103199
  • 30. Gallo, O., Bernal, J., Baquero, J., Botero, R., Gómez, J. (2013). Effect of Three Systems of Incorporation of Dolomite Limestone in the Colombian Flat Plains. Suelos Ecuatoriales Sociedad Colombiana de La Ciencia Del Suelo, 43(1), 24–28.
  • 31. Galvis Quintero, J.H., Anaya, O.C., Bernal Riobo, J.H., Baquero, J.E. (2018). Evaluation of structural stability and pore space in a savanna Oxisol from the Eastern Plains of Colombia (Evaluación de la estabilidad estructural y espacio poroso en un Oxisol de sabana de los Llanos Orientales de Colombia). Journal of Physical Therapy Science, 9(1), 1–11. http://dx.doi.org/10.1016/j.neuropsychologia.2015.07.010%0A http://dx.doi.org/10.1016/j.visres.2014.07.001%0A https://doi.org/10.1016/j. humov.2018.08.006%0A http://www.ncbi.nlm. nih.gov/pubmed/24582474%0A https://doi.org/10.1016/j.gaitpost.2018.12.007%0A https:
  • 32. Gao, F., Wang, Y., Chen, X., Yang, W. (2020). Trend analysis of rainfall time series in Shanxi province, Northern China (1957-2019). Water (Switzerland), 12(9), 1–22. https://doi.org/10.3390/W12092335
  • 33. Hartshorn, G.S. (2013). Tropical Forest Ecosystems. In Encyclopedia of Biodiversity: Second Edition 7(269–276). https://doi.org/10.1016/B978-0-12-384719-5.00146-5
  • 34. Hébert-Dufresne, L., Pellegrini, A.F.A., Bhat, U., Redner, S., Pacala, S.W., Berdahl, A.M. (2018). Edge fires drive the shape and stability of tropical forests. Ecology Letters, 21(6), 794–803. https://doi.org/10.1111/ele.12942
  • 35. Hoogenboom, G. (2000). Contribution of agrometeorology to the simulation of crop production and its applications. Agricultural and Forest Meteorology, 103(1–2), 137–157. https://doi.org/10.1016/S0168-1923(00)00108-8
  • 36. Hoyos, N., Escobar, J., Restrepo, J.C., Arango, A.M., Ortiz, J.C. (2013). Impact of the 2010-2011 La Niña phenomenon in Colombia, South America: The human toll of an extreme weather event. Applied Geography, 39(September 2011), 16–25. https://doi.org/10.1016/j.apgeog.2012.11.018
  • 37. Hurtado, A., Mesa, Ó. (2016). Climate change and space-time variability of precipitation in Colombia. Revista EIA, 12(574), 131–150.
  • 38. Ibrahim, M.A., Johansson, M. (2021). Attitudes to climate change adaptation in agriculture – A case study of Öland, Sweden. Journal of Rural Studies, 86(March), 1–15. https://doi.org/10.1016/j.jrurstud.2021.05.024
  • 39. IDEAM, UNAL. (2018). Climate variability and climate change in Colombia (Variabilidad climática y el cambio climático en Colombia) [Archivo PDF]. In Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM Universidad Nacional de Colombia – UNAL (28). http://documentacion.ideam.gov.co/openbiblio/bvirtual/023778/variabilidad.pdf
  • 40. IPCC. (2020). Climate change and the earth (El cambio climático y la tierra). In Grupo Intergubernamental de Expertos sobre el Cambio Climático. https:// www.ipcc.ch/site/assets/uploads/sites/4/2020/06/ SRCCL_SPM_es.pdf
  • 41. IPCC. (2022). Global to Regional Atlas. In Pörtner, H.O., A. Alegría, V. Möller, E.S. Poloczanska, K. Mintenbeck, S. Götze (Eds.), Climate Change 2022 – Impacts, Adaptation and Vulnerability (2811–2896). Cambridge University Press. https://doi.org/10.1017/9781009325844.028
  • 42. Jiménez‐Sánchez, G., Markowski, P.M., Jewtoukoff, V., Young, G.S., Stensrud, D.J. (2019). The Orinoco Low‐Level Jet An Investigation of Its Characteristics and Evolution.pdf. Journal of Geophysical Research: Atmospheres, 124(10), 610–696, 711. https://doi.org/https://doi.org/10.1029/2019JD030934
  • 43. Leon, G., Arcila, A., Pulido, L.A., Kondo, T. (2018). Capítulo 25 Contenido Cambio climático y control biológico de insectos: visión y perspectiva de la situación Chapter 25 Climate change and biological control of insects: current situation and perspectives. In Control biológico de fitopatógenos, insectos y ácaros (Issue October, 572).
  • 44. Littmann, T. (2008). Topoclimate and Microclimate, 175–182. https://doi.org/10.1007/978-3-540-75498-5_12
  • 45. López, J.J., Goñi, M., San Martín, I., Erro, J. (2019). Análisis regional de frecuencias de las precipitaciones diarias extremas en Navarra. Elaboración de los mapas de cuantiles. Ingeniería Del Agua, 23(1), 33. https://doi.org/10.4995/ia.2019.10058
  • 46. Lozano, E. (2014). Eastern Plains Basin Compilation (Compilación de la cuenca de los Llanos Orientales). Servicio Geológico Colombiano, 1(Diciembre), 5–9.
  • 47. Mahlengule Zwane, E. (2019). Capacity Development for Scaling Up Climate-Smart Agriculture Innovations. In Climate Change and Agriculture. IntechOpen. https://doi.org/10.5772/intechopen.84405
  • 48. Mesri, M., Ghilane, A., Bachari, N.E.I. (2013). An approach to spatio-temporal analysis for climatic data. Revue Des Energies Renouvelables, 16, 413–424.
  • 49. Mohamadi, M.A., Kavian, A. (2015). Effects of rainfall patterns on runoff and soil erosion in field plots. International Soil and Water Conservation Research, 3(4), 273–281. https://doi.org/10.1016/j.iswcr.2015.10.001
  • 50. Moreno-Conn, L.M., Rodríguez-Hernandez, N.S., Arguello, J.O., Gallo Gordillo, O., Bernal-Riobo, J.H., Arango, M., Baquero, J.E. (2022). Land use change and its effect on ecosystem services in an Oxisol of the eastern High Plains of meta department in Colombia. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.687804
  • 51. Ortega, J.M.S. (2021). Evaluation of the transport of atmospheric moisture from the Atlantic Ocean to the Orinoco and northern Amazon basins during 2010 using the WRF-Tracers model (Evaluación del transporte de humedad atmosférica desde el océano Atlántico hacia las cuencas del Orinoco y el norte del Amazonas durante el año 2010 mediante el modelo WRF-Tracers) [Tesis de Ingenieria Ambiental]. In Universidad de Antioquia. https://bibliotecadigital.udea.edu.co/bitstream/10495/19697/1/SanchezJuan_2021_EvalucionTransporteHumedad.pdf
  • 52. Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.S.P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5(MAR), 1–8. https://doi.org/10.3389/fpls.2014.00086
  • 53. Pardo, O., Torres, H., Trujillo, G., Trujillo, J. (2020). Impacts of climate change on the yields of Rice (Oryza sativa L) in the Llanos area, Colombia (Impactos del cambio climatico sobre los rendiemientos del Arroz (Oryza sativa L) en la zona llanos, Colombia). AGLALA ISSN 2215-7360, 11(2), 94106. https://revistas.curn.edu.co/index.php/aglala/article/view/1698
  • 54. Pathak, H. (2023). Impact, adaptation, and mitigation of climate change in Indian agriculture. Environmental Monitoring and Assessment, 195(1). https://doi.org/10.1007/s10661-022-10537-3
  • 55. Andrés J Peña Q., Álvaro Jaramillo R., María J Paternina Q (2011). Detecting low frequency cycles in rainfall series from Colombian coffee-growing area by using descriptive methods. Earth Sciences Research Journal, 15(2), 109–114.
  • 56. Pérez-Ortiz, M. A., Montenegro-Murillo, D.D., Vargas-Franco, V. (2022). Analysis of the influence of climatic variability on precipitation in the Cali River basin, Colombia (in Spanish). DYNA, 89(221), 168–177. https://doi.org/10.15446/dyna.v89n221.101607
  • 57. Poveda, G., Espinoza, J.C., Zuluaga, M.D., Solman, S.A., Garreaud, R., van Oevelen, P.J. (2020). High Impact Weather Events in the Andes. Frontiers in Earth Science, 8(May), 1–32. https://doi.org/10.3389/feart.2020.00162
  • 58. Praveen, B., Talukdar, S., Shahfahad, Mahato, S., Mondal, J., Sharma, P., Islam, A. R. M. T., Rahman, A. (2020). Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Reports, 10(1), 1–21. https://doi.org/10.1038/s41598-020-67228-7
  • 59. PRICCO. (2017). Comprehensive Regional Climate Change Plan for the Orinoquía (in Spanish). Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia., No. 438.
  • 60. Qiu, J., Shen, Z., Xie, H. (2023). Drought impacts on hydrology and water quality under climate change. Science of The Total Environment, 858, 159854. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.159854
  • 61. Ramirez, C. , C., Vélez U., J.J., Peña Q., A.J. (2018). Analyzing climatic indices to predict monthly rainfall in an agricultural region of the northern Andes (Caldas, Colombia) (in Spanish). Investigaciones Geográficas, 55, 111–126. https://doi.org/10.5354/0719-5370.2018.48460
  • 62. Ramirez-Contreras, N.E., Fontanilla-Díaz, C.A., Pardo, L.E., Delgado, T., Munar-Florez, D., Wicke, B., Ruíz-Delgado, J., van der Hilst, F., Garcia-Nuñez, J.A., Mosquera-Montoya, M., Faaij, A.P.C. (2022). Integral analysis of environmental and economic performance of combined agricultural intensification amp; bioenergy production in the Orinoquia region. Journal of Environmental Management, 303, 114137. https://doi.org/10.1016/j.jenvman.2021.114137
  • 63. Reichert, J.M., Rodrigues, M.F., Bervald, C.M.P., Kato, O.R. (2016). Fire‐Free Fallow Management by Mechanized Chopping of Biomass for Sustainable Agriculture in Eastern Amazon: Effects on Soil Compactness, Porosity, and Water Retention and Availability. Land Degradation and Development, 27(5), 1403–1412. https://doi.org/10.1002/ldr.2395
  • 64. Rhine, M.D., Stevens, G., Shannon, G., Wrather, A., Sleper, D. (2010). Yield and nutritional responses to waterlogging of soybean cultivars. Irrigation Science, 28(2), 135–142. https://doi.org/10.1007/s00271-009-0168-x
  • 65. Rivera, M., Amézquita, E. (2013). Biophysical characterization of monoculture and rotation systems in oxisols of the Eastern Plains of Colombia (Caracterización biofísica de sistemas en monocultivo y en rotación en oxisoles de los Llanos Orientales de Colombia). In E. Amézquita, I. Rao, M. Rivera, I. Corrales, J. Bernal (Eds.), Sistemas agropastoriles : Un enfoque integrado para el manejo sostenible de oxisoles de los Llanos Orientales de Colombia .. Centro Internacional de Agricultura Tropical (CIAT) Ministerio de Agricultura y Desarrollo Rural (MADR) Corporación Colombiana de (pp. 69–86). http://hdl.handle.net/20.500.12324/35788
  • 66. Robinson, D.A., Jones, S.B., Lebron, I., Reinsch, S., Domínguez, M.T., Smith, A.R., Jones, D.L., Marshall, M.R., Emmett, B.A. (2016). Experimental evidence for drought induced alternative stable states of soil moisture. Scientific Reports, 6(September 2015), 1–6. https://doi.org/10.1038/srep20018
  • 67. Ross, K. (2016). Preparing for an uncertain future with climate smart agriculture. California Agriculture, 70(1), 4–5. https://doi.org/10.3733/ca.v070n01p4
  • 68. Sah, R.P., Chakraborty, M., Prasad, K., Pandit, M., Tudu, V.K., Chakravarty, M.K., Narayan, S.C., Rana, M., Moharana, D. (2020). Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59689-7
  • 69. Shao, R., Jia, S., Tang, Y., Zhang, J., Li, H., Li, L., Chen, J., Guo, J., Wang, H., Yang, Q., Wang, Y., Liu, T., Zhao, X. (2021). Soil water deficit suppresses development of maize ear by altering metabolism and photosynthesis. Environmental and Experimental Botany, 192. https://doi.org/10.1016/j.envexpbot.2021.104651
  • 70. Sierra, J.P., Arias, P.A., Vieira, S.C. (2015). Precipitation over Northern South America and Its Seasonal Variability as Simulated by the CMIP5 Models. Advances in Meteorology, 2015, 1–22. https://doi.org/10.1155/2015/634720
  • 71. Soil Survey Staff. (2022). Keys toSoil Taxonomy (USDA Natural Resources Conservation Service, Ed.; 13th edition).
  • 72. Tian, B., Dong, X. (2020). The Double‐ITCZ Bias in CMIP3, CMIP5, and CMIP6 Models Based on Annual Mean Precipitation. Geophysical Research Letters, 47(8). https://doi.org/10.1029/2020GL087232
  • 73. Tian, Q., Lu, J., Chen, X. (2022). A novel comprehensive agricultural drought index reflecting time lag of soil moisture to meteorology: A case study in the Yangtze River basin, China. Catena, 209(P1), 105804. https://doi.org/10.1016/j.catena.2021.105804
  • 74. Torres-Pineda, C.E., Pabón-Caicedo, J.D. (2017). Intraseasonal variability of precipitation in Colombia and its relationship with the Madden-Julian oscillation (in Spanish). Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41(158), 79. https://doi.org/10.18257/raccefyn.380
  • 75. UPRA. (2018). Methodology for general identification of the agricultural frontier in Colombia (Metodología para la identificación general de la frontera agrícola en Colombia).
  • 76. Urrea, V., Ochoa, A., Mesa, O. (2019). Seasonality of Rainfall in Colombia. Water Resources Research, 55(5), 4149–4162. https://doi.org/10.1029/2018WR023316
  • 77. Vallat, R. (2018). Pingouin: statistics in Python. Journal of Open Source Software, 3(31), 1026. https://doi.org/10.21105/joss.01026
  • 78. Waliser, D.E., Jiang, X. (2015). Tropical Meteorology and Climate: Intertropical Convergence Zone. In Encyclopedia of Atmospheric Sciences: Second Edition (Second Edi, 6). Elsevier. https://doi.org/10.1016/B978-0-12-382225-3.00417-5
  • 79. Yue, S., Wang, C.Y. (2002). Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resources Research, 38(6), 4-1-4–7. https://doi.org/10.1029/2001wr000861
  • 80. Zhang, H., Han, M., Comas, L.H., Dejonge, K.C., Gleason, S.M., Trout, T.J., Ma, L. (2019). Response of maize yield components to growth stage-based deficit irrigation. Agronomy Journal, 111(6), 32443252. https://doi.org/10.2134/agronj2019.03.0214
  • 81. Zhu, R., Hu, T., Wu, F., Liu, Y., Zhou, S., Wang, Y. (2023). Photosynthetic and hydraulic changes caused by water deficit and flooding stress increase rice’s intrinsic water-use efficiency. Agricultural Water Management, 289, 108527. https://doi.org/10.1016/j.agwat.2023.108527
  • 82. Zi, L., Gargallo-Garriga, A., Oravec, M., AbdElgawad, H., Nijs, I., De Boeck, H.J., Reynaert, S., Donnelly, C., Li, L., Beemster, G.T.S., Urban, O., Asard, H. (2023). Ecometabolomic analysis of the effect of more persistent precipitation regimes reveals common and tolerance related metabolic adjustments in four grassland species. Environmental and Experimental Botany, 215, 105489. https://doi.org/10.1016/j.envexpbot.2023.105489
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cecaa17-4ddc-4277-ab1c-133fa86ed143
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.