PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Ru Impurity Effect on Electronic, Optical and Thermoelectric Properties of MoS2 Nano-Sheet: a DFT Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electronic, optical and thermoelectric properties of MoS2 nano-sheet in presence of the ru impurity have been calculated by density functional theory framework with generalized gradient approximation. The MoRuS2 nano-sheet electronic structure was changed to the n-type semiconductor by 1.3 eV energy gap. The optical coefficients were shown that the loosing optical energy occurred in the higher ultraviolet region, so this compound is a promising candidate for optical sensing in the infrared and visible range. The thermoelectric behaviors were implied to the good merit parameter in the 100K range and room temperatures and also has high amount of power factor in 600K which made it for power generators applications.
Twórcy
  • Department of Physics, Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
  • Department of Physics, Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Physics, Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • [1] K. S. Novoselov et al., Nature 438, 197-200 (2005).
  • [2] F. Ma et al., Nano Lett. 16, 3022-3028 (2016).
  • [3] A. Boochani, B. Nowrozi, J. Khodadadi, S. Solaymani, S. Jalali-Asadabadi, J. Phys. Chem. C. 121 (7), 3978-3986 (2017).
  • [4] B. S. Mohrdarghaemmaghami, A. Boochani, S. M. Elahi, H. Khosravi, Results Phys. 8, 1209-1215 (2018).
  • [5] V. L. Le, T. J. Kim, H. G. Park, H. T. Nguyen, X. A. Nguyen, Y. D. Kim, Curr. Appl. Phys. 19 (2), 182-187 (2019).
  • [6] Juntong Zhu et al., J. Am. Chem. Soc.141 (13), 5392-5401 (2019).
  • [7] K. Sarvazad, M. Elahi, F. Ahmadian, A. Boochani, Mater. Res. Express. 6 (7), 075029-075039 (2019).
  • [8] M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113, 3766-3798 (2013).
  • [9] F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, B. T. Jonker, Nano Lett. 13, 668-673 (2013).
  • [10] H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, S. Im, Nano Lett. 12, 3695-3700 (2012).
  • [11] N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R.Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, M. Terrones, Adv. Funct. Mater. 23, 5511-5517 (2013).
  • [12] B. Radisavljevic, A. Radenovic, J. Brivio, I. V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147-50 (2011).
  • [13] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, Science 331, 568-571 (2011).
  • [14] H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. Castro Neto, J. Martin, S. Adam, B. Özyilmaz, Nano Lett. 14, 1909-1913 (2014).
  • [15] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, Adv. Mater. 24, 2320 (2012).
  • [16] Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, Adv. Mater. 26, 2648-2653 (2014).
  • [17] X. Zhao, C. Xia, T. Wang et al., J. Alloys Compd. 649, 357-361 (2015).
  • [18] W. J. Yu, Z. Li, H. Zhou et al., Nat. Mater. 12, 246-252 (2013).
  • [19] J. Lin, J. Zhong, S. Zhong et al., Appl. Phys. Lett. 103 (6), 063109-063113 (2013).
  • [20] J. Pu, Y. Yomogida, K. K. Liu et al., Nano Lett. 12, 4013-4017 (2012).
  • [21] O. Lopez-Sanchez et al., Nature Nanotech. 8, 497-501 (2013).
  • [22] S. Wi, H. Kim, M. Chen, H. Nam, L. J. Guo, E. Meyhofer, X. Liang, ACS Nano. 8, 5270-5281 (2014).
  • [23] S. Ding, D. Zhang, J. S. Chen , X. W. (David) Lou, Nanoscale. 4, 95-98 (2012).
  • [24] Y. Li, H. Wang, L. Xie, Y. Liang, G. Ghong, H. Dai, J. Am. Chem. Soc. 133, 7296-7299 (2011).
  • [25] J.W. Jiang, Front. Phys. 10, 287-302 (2015).
  • [26] H. Shi, H. Pan, Y. W. Zhang et al., Phys. Rev. B. 87 155304-155312 (2013).
  • [27] T. M. Lei, S. B. Wu et al., Rare Metal Materials and Engineering 42, 2477-2480 (2013).
  • [28] E. Gourmelon et al., Sol. Energy Mater. Sol. Cells. 46, 115-121 (1997).
  • [29] M. Thomalla, H. Tributsch, J. Phys. Chem. B. 110, 12167-12171 (2006).
  • [30] Ştefan Ţălu et al., Electron. Mater. Lett. 12 (5), 580-588 (2016).
  • [31] Arash Boochani et al., Commun. Theor. Phys. 63 (5), 641-651 (2015).
  • [32] Ştefan Ţălu, Miroslaw Bramowicz, Slawomir Kulesza, Shahram Solaymani, Mater. Sci. Semicond. Process 79, 144-152 (2018).
  • [33] S. Majidi et al., Results Phys. 7, 3209-3215 (2017).
  • [34] M. Zare et al., Sci. Rep. 8 (1), 10870-10881 (2018).
  • [35] M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, A. Castellanos-Gomez, Nano Lett. 13, 358-363 (2013).
  • [36] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. D. Lou, Y. Xie, Adv. Mater. 25, 5807-5013 (2013).
  • [37] X. Liu, G. Zhang, Q.-X. Pei, Y.-W. Zhang. Appl. Phys. Lett. 103, 133113-133121 (2013).
  • [38] Y. Cai, J. Lan, G. Zhang, Y.-W. Zhang, Phys. Rev. B. 89, 035438-035446 (2014).
  • [39] R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, H. G. Xing, ACS Nano. 8, 986-993 (2014).
  • [40] Z. Jin, Q. Liao, H. Fang, Z. Liu, W. Liu, Z. Ding, T. Luo, N. Yang, Sci Rep. 5, 18342-18349 (2015).
  • [41] K. Hippalgaonkar, Y. Wang, Y. Ye, D. Y. Qiu, H. Zhu, Y. Wang, J. Moore, S. G. Louie, X. Zhang, Phys. Rev. B. 95, 115407-115413 (2017).
  • [42] H. Babaei, J. M. Khodadadi, S. Sinha, Appl. Phys. Lett. 105, 193901-193907 (2014).
  • [43] W. Huang, X. Luo, C. K. Gan, S. Y. Quek, G. C. Liang, Phys. Chem. Chem. Phys. 16, 10866 -10874 (2014).
  • [44] S. Bhattacharyya, T. Pandey, A. K. Singh, Nanotechnology. 25 (46), 465701-465714 (2014).
  • [45] Yu Cai, Xi Yang, Tao Liang, Lu Dai, Lin Ma, Guowei Huang, Weixiang Chen, Hongzheng Chen, Huanxing Su, Mingsheng Xu, Nanotechnology 25 (46), 465401-465407 (2014).
  • [46] P. Blaha, K. Schwarz, P. Sorantin, S. B. Trickey, Comput. Phys. Commun. 59, 399-415 (1990).
  • [47] P. Blaha, K. Schwarz, G. K. H. Madesen, D. Kvasnicka, J, Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn; Universitaetwien: Wein, Austria, 2001.
  • [48] J. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B. 46, 6671-6678 (1992).
  • [49] H. J. Monkhorst, J. D. Pack. Phys. Rev. B. 13, 5188-5195 (1976).
  • [50] R. L. Kronig, J. Opt. Soc. Am. 12, 547-557 (1926).
  • [51] G. K. H. Madsen, D. J. Singh, Comput. Phys. Commun. 175, 67-71 (2006).
  • [52] A. M. Fox, Optical Properties of Solids. Oxford University Press, (London 2001).
  • [53] F. Wooten, Optical Properties of Solids. Academic Press, New York and (London 1972).
  • [54] W. Liang, A. I. Hochbaum, M. Fardy, O. Rabin, M. Zhang, P. Yang, Nano Lett. 9, 1689-1693 (2009).
  • [55] K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kantazidis, Nature 489, 414-418 (2012).
  • [56] G. J. Snyder, E. S. Toberer, Nat. Mater. 7, 105-114 (2008).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ce721b1-00f8-4da2-ae27-8580dc18e83a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.