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Abstract. The aim of this paper is to show how to complete the known net-like method for the 

case of a parabola or a hyperbola without using advanced methods of projective geometry. 

Only a construction of proportional segments is applied. Authors present a construction of the 

vertex of a parabola when its ideal point D
∞

, a point B, and a point A with the tangent t are 

given. In the case of a hyperbola defined by its vertices A and B and a point C, the net-like 

method is completed by a construction of the hyperbola asymptotes. To understand the idea of 

this construction, a bit more complicated than the previous one, basic skills of elementary 

geometry, Pythagoras’ theorem and Thales’ theorem, are sufficient. In the case of a hyperbola 

defined by its asymptotes and a point, the presented construction of its vertices considering 

some parallelograms equal in area, follows from the well-known theorem about a line 

intersecting the hyperbola and its asymptotes.  

Keywords: conics, parabola, hyperbola, ellipse, net-like methods, vertices of conics, 

asymptotes of a hyperbola, Pythagoras’ theorem, Thales’ theorem, proportional 

segments  

1 Introduction 
Former Descriptive Geometry programs included the basics of projective geometry. This was 

thus reflected in the classic textbooks for this subject (see [5], [6]). In those books, conic 

curves are defined and analyzed through projection transformations. Projective properties are 

used to formulate important theorems (Pascal’s and Brianchon’s) and to construct 

characteristic points. 

Present course programs do not incorporate projective geometry. Therefore, we cannot 

consider conics as “products” of projection as E. Otto does in [5]. Nevertheless, the net-like 

method (see [3], p.142) resulting from this approach is presented to students as a way to 

construct points of an ellipse, parabola and hyperbola ([1], [3]). In order to achieve a 

satisfactory shape of these curves, it is of course better to know the characteristic points of 

these conics. 

Diligent students using the CAD software are not always satisfied with the shape of 

the curve achieved by connecting through the “spline” command the consecutive points found 

by the net-like method. They accurately notice that perhaps the effect would have been better 

if characteristic points were among the constructed ones. 

To use the CAD program to draw an ellipse, its vertices are necessary. This does not 

pose a problem, since affinity is part of the course, and these missing crucial points can be 

found by transforming the ellipse into a circle. It is impossible however, to do the same with a 

parabola or a hyperbola. When searching for the parabola/hyperbola vertices or asymptotes, 

students cannot transform them into a circle (as it once was standard – see [2] p. 120) because 
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central collineation is not part of the course program. There are also no practical exercises in 

applying the Pascal’s theorem, even if there are a few minutes during the lecture to mention it. 

The aim of this article is to show how characteristic points may be constructed in the 

net-like method, relying only on the knowledge gained in high school (the ability to construct 

proportional segments). 

2  The vertex of a parabola when its ideal point D∞, a point A with the tangent t, and 
a point B are given 

In this case students know the net-like method of construction of points of the parabola in the 

form as presented in Figure 1. We will show that the construction of the parabola vertex can 

be based only on the construction of proportional segments, not new to students. 

Label d the line passing through D
∞

 and B, and O, the point of the intersection of t 

and d ; |AO|= a, |BO|= b. A point Pi of the parabola is the point of intersection of two lines, ti 

and di. The line di passes through D
∞

 and Xi, where Xi lies on t, and is distant at i
n

a
 from A. 

The line ti passes through A and Yi, where Yi lies on d and is distant from O at i
n

b
. By 

definition xi =i
n

a
 , yi = i

n

b
, where i is an integer. Therefore, for any “rational” point Pi on the 
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Figure 1 The net-like method of construction of points of the parabola 
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parabola 
i

i

OY

AX
=

i

i

y

x
= 

b

a
, there is no difficulty to generalize this result for any xP and yP 

defining a “real“ point P on the parabola.  

Hence, the construction of a missing point Q on the parabola consists in finding two 

segments AXQ on t and OYQ on d such that |AXQ| : |OYQ| = 
b

a
. The point Q is the point of 

intersection of tQ and dQ, defined similarly as for a “rational” point Pi. If one of them is given, 

the other can be found.  

Using the Thales’ theorem that construction can be made as shown in Figure 2. 
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Figure 2 The construction of a missing point Q on the parabola Figure 3 The construction of the point 
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Figure 4 The whole structure from figures 2 and 3 
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The vertex V of the parabola is characterized by the fact that dV is the axis of 

symmetry of the parabola. Thus dV is the perpendicular bisector of the segment AC, where the 

point C is symmetric on the parabola to A, lying on tC perpendicular to d (AYC � d). Applying 

in Figure 3 the construction presented in Figure 2, one finds first XC, next the line dC and the 

required point C. 

The perpendicular bisector dV  of AC intersects t at XV, and YV is found applying once 

more the construction from Figure 2. Figure 4 displays the whole construction. 

Remark: the construction can be simplified. Once point XC is constructed, the line dV 

passes also through the midpoint XV of the segment AXC. 

3  The asymptotes of a hyperbola when its vertices A and B, and a point C are given. 
Two perpendicular lines x and y intersecting at the given point C are considered as number 

lines with zero points, 0x and 0y respectively, as it is shown in Figure 5. Let Xi be the point on 

x with the coordinate xi, and Yi the point on y with the coordinate yi.. Therefore, according to 

the net-like method, a “rational” point Pi (lying on the hyperbola defined by A, B, and C) is 

determined as the intersection point of two lines, ai and bi, where ai is passing through A and 

Xi, and bi is passing through B and Yi, and  xi = i
n

a
,  yi = i

n

b
. 

Considering n → ∞, one can describe a point P on the hyperbola as common to two 

lines aP and bP such that aP is defined by A and XP (with the coordinate xP), bP is defined by B 

and YP on y (with coordinate yP), and  xP : yP =
b

a
. 

An asymptote q of the hyperbola is passing through an ideal point Q
∞

. For Q
∞

 lying on 

the hyperbola, aQ || bQ, with  
Q

Q

y

x
=

b

a
 (Fig. 6). 
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Figure 5 Two perpendicular lines x and y intersecting at the given point C are considered as numberlines with 

zero points, 0x and 0y respectively 
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Therefore, in order to determine the required asymptotes, one must find the 

coordinates xQ and yQ such that: 

 
Q

Q

y

x
=

b

a
; tanφ = 

d

xQ
=

Qy

a
, where d = b+c.  (1) 

From these relations we have: 

  2

Qx b = a
2
d.  (2) 

After calculations we obtain a ratio: 

 
a

xQ
=

b

d
.  (3) 

The last proportion is not easy to construct directly. Because segments of the form  can 

be constructed for any given segments x and y (see [4], p.18), we change the obtained equality 

into the following: 

 
a

xQ
=

ab

ad
. (4) 

Now the construction of the required asymptote can be realized using the Thales’ theorem, as 

it is shown in Fig. 7. 
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Figure 6 First step of the determination of the asymptote q 
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The asymptote q (tangent to the hyperbola at the ideal point Q
∞

) is passing through Q
∞

 

and the midpoint O of the segment AB. The other asymptote is symmetric to q with respect to 

the hyperbola axis (the line AB). 

4  Vertices of a hyperbola when its asymptotes s and t, and a point C are given 
In the case of a hyperbola defined by its asymptotes and a point, in order to construct the 

missing points of the hyperbola one generally uses the method based on the following well 

known property (see for example [1], [3]): 

I. Segments of any line intersecting a hyperbola, included between the hyperbola and its 

asymptotes, are equal in length. 

This fact will be used to show another useful property of a hyperbola.  

Notice that any parallelogram is divided by its diagonal onto two triangles equal in 

area. Thus, two lines  passing through a point on the parallelogram’s diagonal, parallel to the 
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Figure 7 The construction of the asymptote q by using the Thales’ theorem 
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Figure 8 Illustration of: a)  the property: two lines passing through a point on the parallelogram’s diagonal, 

parallel to the parallelogram’s sides, determine two parallelograms equal in area (crosshatched), b) the 

property II 
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parallelogram’s sides, determine two parallelograms equal in area (crosshatched in Figure 8a). 

Consider now two points C and Q on a hyperbola, with its asymptotes s and t and lines 

passing through these points parallel to the asymptotes (see Figure 8b). As |C1| = |Q2| by the 

Property I, the triangles C13 and Q24 are congruent according to the criterion ASA (angle, 

side, angle). Consequently, the parallelograms O5C3 and O4Q6 are equal in area. Therefore, 

the following property is true as well. 

II. Given a hyperbola with asymptotes intersecting at O, parallelograms with sides 

parallel to the asymptotes, with one vertex at O and the other on the hyperbola, are 

equal in area. 

Accordingly, consider now a hyperbola when its asymptotes s and t together with a point C 

are given. The parallelogram determined by C has the area equal to bcsinα. As a vertex A of a 

hyperbola defines a parallelogram with equal sides, therefore in order to construct it, one may 

find a segment a such that  a
2
sinα = bcsinα, i.e. a

2
 = bc. The construction is shown in 

Figure 9. 
 

C

A

s

t

a

b

a

b

c

=bc

O

B
a2

 
Figure 9 Illustration of the construction of a segment a 
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Figure 10 The construction of points of a hyperbola defined by a point and asymptotes 
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The Property II allows us to determine a method (see Figure 10) of points of a hyperbola 

defined by a point and asymptotes, similar to that for equilateral hyperbolas (see [3], p.140)  
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PUNKTY CHARAKTERYSTYCZNE W SIATKOWYCH 
KONSTRUKCJACH UZUPEŁNIANIA PUNKTÓW STOŻKOWYCH 

Celem tej pracy jest pokazanie jak uzupełnić metody siatkowe wyznaczania punktów hiperboli 

lub paraboli przez podanie konstrukcji punktów charakterystycznych tych krzywych, bez 

odwoływania się do zaawansowanych treści geometrii rzutowej. Autorki pokazują konstrukcję 

wierzchołka paraboli określonej przez dany kierunek D
∞

, punkt C, punkt A ze styczną t. 

Wykorzystywana jest tylko konstrukcja odcinków proporcjonalnych. W przypadku hiperboli 

określonej przez dane wierzchołki A i B oraz punkt C konstrukcja siatkowa jest uzupełniona o 

sposób wyznaczania asymptot tej hiperboli. Metoda jest nieco bardziej złożona niż w 

poprzednim przypadku, ale do jej zrozumienia także wystarcza znajomość geometrii 

elementarnej, twierdzeń Pitagorasa i Talesa. W przypadku hiperboli określonej przez dany jej 

punkt C oraz asymptoty s i t, podana konstrukcja jej wierzchołka, wykorzystująca tylko 

równość pól odpowiednich równoległoboków, opiera się na znanym twierdzeniu o odcinkach 

prostej przecinającej hiperbolę i jej asymptoty. 


