PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Functioning of an intelligent system on the example of the National Power Demand System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This publication includes a concept and research results regarding the search for regularity in the functioning of an intelligent system using the example of a system for forecasting national power demand. The research employs the ARX regression machine learning method to derive models of the functioning of the electricity forecasting system. The study uses actual values of electricity generated by both uniform and non-uniform domestic electricity systems as input quantities, and forecasted national power demand as the output values from January 2023. The main aim of the research was to obtain several hourly models and several monthly models to demonstrate changes in selected system parameters and to show whether, and what changes occur in the direction of increasing the system’s independence, enhancing the system control level, etc. The research methodology also employs, in addition to the machine learning method, the method of control theory and systems. At the same time, an example of obtaining a model of the national system demand for electric power using the ARX machine learning method, which was transformed into state space model, whose matrix elements were used to interpret the correctness of changes in the intelligent system.
Rocznik
Strony
47--60
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
  • University of Siedlce, Faculty of Exact and Natural Sciences, Institute of Computer Science ul. 3 Maja 54, 08-110 Siedlce, Poland
  • KOMAG, Institute of Minig Technology, ul. Pszczyńska 37, 44-101 Gliwice, Poland
  • University of Siedlce, Faculty of Exact and Natural Sciences, Institute of Computer Science ul. 3 Maja 54, 08-110 Siedlce, Poland
Bibliografia
  • 1. J. Tchórzewski, R. Marlęga, Smart Village as an action system supporting people with special information and communication needs, Studia Informatica. Systems and Information Technology, Vol. 1(30)2024, pp. 49-65.
  • 2. W. Agustiono, Smart Villages in Indonesia in the Light of the Literature Review, 2022 International Conference on ICT for Smart Society (ICISS), Bandung, Indonesia, pp. 1-5, 2022.
  • 3. E. Anastasiou, S. Manika, K. Ragazou, I. Katsios, Territorial and Human Geography Challenges: How Can Smart Villages Support Rural Development and Population Inclusion? Social Sciences, 10(6), pp. 1-15, 2021.
  • 4. K. Bilewicz, Smart metering. Inteligentny system pomiarowy (in Polish), PWN, Warszawa, pages 278, 2012.
  • 5. K. Bokun, J. Nazarko, Smart villages concept. A bibliometric analysis and state-of-threat literature review, Progress in Planning, 100765, ELSELVIER, April 2023, Article in Press, pp. 1-23.
  • 6. S. P. Mohanty, H. Thapliyal and R. Bajpai, Consumer Technologies for Smart Cities to Smart Villages, 2021 IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, pp. 1-1, 2021.
  • 7. T. Thaj, M. Delsy, K. Haritha, B. Martin and G. Karthika, Smart Village Monitoring and Control Using PLC and SCADA, 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 2021, pp. 1-7.
  • 8. S. Wu et al., Evaluation of Smart Infrastructure Systems and Novel UV-Oriented Solution for Integration, Resilience, Inclusiveness, and Sustainability, 2020 5th International Conference on Universal Village (UV), Boston, MA, USA, 2020, pp. 1-45.
  • 9. Ministerstwo Klimatu i Środowiska, Polityka energetyczna Polski do roku 2040, Załącznik do uchwały nr 22/2021 Rady Ministrów z dnia 2 lutego 2021 r. (in Polish), in English: Poland’s energy policy until 2040, annex to Resolution No. 22/2021 of the Council of Ministers of February 2, 2021.Warszawa 2021.
  • 10. Ministerstwo Klimatu i Środowiska, Zał. 2 do PEP do roku 2040 pt. Wnioski z analiz prognostycznych dla sektora energetycznego (in Polish), in English: Annex 2 to PEP until 2040 Applications from prognostic analyzes for the energy sector, Warszawa 2021.
  • 11. J. Tchórzewski, W. Nabiałek, R. Marlega, “Modeling an Intelligent System Using Regression Machine Learning on the Example of the Electric Power Demand System”, (Extended Abstract), [in:] Niewiadomski A., Wawrzyńczak-Szaban A. (ed.): Proceedings of the 2nd Conference on Intelligent Systems and Information Technologies. Logic, Knowledge, and Reasoning in Intelligent Systems. Extended abstracts (2024), Siedlce, UPH w Siedlcach, pp. 106-113.
  • 12. J. Tchórzewski, W. Nabiałek, M. Demiańczuk, Regression Machine Learning of an Hourly Model of National Electric Power Demand System, IEEE Digital Library, PAEE, Kościelisko (2025), pp. 1-5.
  • 13. A. Zimmer, A. Englot, Identyfikacja obiektów i sygnałów. Teoria i praktyka dla użytkowników MATLABA in Polish), in English: Identification of objects and signals. Theory and practice for MATLAB users, PK (2005), Kraków, pages 239.
  • 14. J. Tchórzewski, Rozwój systemu elektroenergetycznego w ujęciu teorii sterowania i systemów (in Polish), in English: Development of the power system in terms of control theory and systems, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, pages 190, 2013.
  • 15. R. Marlęga, Identyfikacja i metaidentyfikacja systemu zarządzania Towarową Energią Elektryczną (in Polish), in English: Identification and metaidentification of the Electricity Management Management System rozprawa doktorska pod kierunkiem dr hab. inż. Jerzego Tchórzewskiego oraz dr hab. inż. Arkadiusz Jurczuka (promotor pomocniczy) na Wydziale Inżynierii Zarządzania PB, Białystok 2022, pages 238.
  • 16. J. Tchórzewski, Metody sztucznej inteligencji i informatyki kwantowej w ujęciu teorii sterowania i systemów (in Polish), Wydawnictwo Naukowe UPH, Siedlce, pages 343, 2021.
  • 17. R. Marlęga, “Hourly identification and simulation of the TGE SA Day-Ahead Market system”, Control and Cybernetics, Vol. 51 (2022) No. 4, pp. 523-555.
  • 18. R. Marlęga, “A methodology of identification and metaidentification research on the example of Day Ahead Market System, Studia Informatica. Systems and Information Technology”, Vol. 2(27)2022, ss. 109-137.
  • 19. Polskie Sieci Elektroenergetyczne SA, Wielkości podstawowe raportów dobowych z pracy KSE (in Polish), in English: The size of basic daily reports from KSE work, https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-dobowe-z-pracy-kse (access: 2021-2025).
  • 20. MATLAB and Simulink with toolboxes such System Identification Toolbox and Control System Toolbox, MathWorks, https://www.mathworks.com [access: 1992-2025].
  • 21. J. Tchórzewski, Systemic Neural Modeling of Hourly Power Demand in the National Power System, IEEE Digital Library, PAEE, Kościelisko 2024, pp. 1-5.
  • 22. R. Marlęga, “Correction of the parametric model of the Day-Ahead Market system using the Artificial Neural Network”, Studia Informatica. Systems and Information Technology, Vol. 1(26)2022, pp. 85-105.
  • 23. J. Tchórzewski, „Model neuronalny 24-godzinowego jednoczesnego zapotrzebowania na moc z wyprzedzeniem dobowym w KSE” (in Polish), in English: Neuronal model of 24-hour simultaneous demand for a daily power in KSE, Przegląd Elektrotechniczny (2025), R. 101 Nr 2, pp. 228-232.
  • 24. W. Rebizant, Metody inteligentne w automatyce zabezpieczeniowej (in Polish), Prace Naukowe Instytutu Elektroenergetyki, in English: Intelligent methods in protection automation, Seria Monografie Nr 29, (93), OW PWr., Wrocław, pages 168, 2004.
  • 25. I. Filipiak, W. Milczarski, Energetyka w okresie transformacji (in Polish), in English: Power engineering in the period of transformation, WN PWN (2023), Warszawa, pages 295.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ce5ef10-c415-4ae7-82e1-3d132c4e4da8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.