PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Materiały opakowaniowe nowej generacji z tworzywa polimerowego ulegającego recyklingowi organicznemu

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
New generation of the polymeric packaging materials susceptible to organic recycling
Języki publikacji
PL EN
Abstrakty
PL
Spośród biodegradowalnych poliestrów, alifatyczne biopoliestry (polihydroksyalkaniany, PHA), to materiał polimerowy pochodzenia naturalnego o szerokim spektrum zastosowań. Polihydroksyalkaniany są typowymi termoplastami, wkraczającymi do naszej codzienności jako jednorazowe materiały opakowaniowe, ale równie silnie lokującymi się w obszarze materiałów stosowanych do celów biomedycznych. Materiały te pochodzą z odnawialnych (niepetrochemicznych) źródeł, a po zakończonym okresie życia ulegają recyklingowi organicznemu. Alternatywnie do kompostowania, poli(3-hydroksyalkaniany) mogą również zostać poddane recyklingowi do cennych surowców, relatywnie prostymi metodami. Niniejszy artykuł, w kontekście przeprowadzonych ostatnio kompleksowych badań nad materiałami opakowaniowymi nowej generacji z tworzyw polimerowych ulegających recyklingowi organicznemu, przedstawia możliwości wykorzystania w tym zakresie PHA i ich syntetycznych analogów.
EN
Among biodegradable polyesters, aliphatic biopolyesters (polyhydroxyalkanoates, PHAs) are polymer materials of natural origin with broad scope of application. PHAs are typical thermoplasts, which conquer our everyday life as disposable packaging materials, but which also have strong position among materials used for medical applications. These materials are of renewable (non fossil) source, and after finished lifetime they undergo organic recycling. Alternatively to composting, poly(3-hydroxyalkanoates) can also be recycled to valuable resources using relatively simple methods. This article, in a perspective of recently carried out comprehensive research of new generation packaging materials made of organically recyclable polymers, presents possibilities of application of PHA and their synthetic analogs in that scope.
Czasopismo
Rocznik
Strony
679--691
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • Centrum Materiałów Polimerowych i Węglowych, Polska Akademia Nauk, Zabrze
autor
  • Centrum Materiałów Polimerowych i Węglowych, Polska Akademia Nauk, Zabrze
autor
  • Centrum Materiałów Polimerowych i Węglowych, Polska Akademia Nauk, Zabrze
autor
  • Centrum Materiałów Polimerowych i Węglowych, Polska Akademia Nauk, Zabrze
autor
  • Centrum Materiałów Polimerowych i Węglowych, Polska Akademia Nauk, Zabrze
autor
  • Centrum Materiałów Polimerowych i Węglowych, Polska Akademia Nauk, Zabrze
Bibliografia
  • 1. Kowalczuk M.: Poland – A national report on position of EDP in plastic waste management, in: ICS-UNIDO survey of trends in environmentally degradable plastics, Chiellini E. (ed.), International Centre for Science and High Technology and the United Nations Industrial Development Organization, 2001.
  • 2. Crank M., Patel M., Marscheider-Weidemann F., Schleich J., Hüsing B., Angerer G.: Techno-economic feasibility of large-scale production of bio-based polymers in Europe, Wolf O. (ed.), Technical Report EUR 22103 EN, 2005.
  • 3. Braunegg, G.; Lefebvre, G.; Genser, K.: Polyhydroxyalkanoates, biopolyesters from renewable resources. J. Biotechnol. 1998, 65 (2–3), 127.
  • 4. Abe H., Doi Y. Structural effects on enzymatic degradabilities for poly[(R)-3-hydroxybutyric acid] and its copolymers. Int. J. Biol. Macromol. 1999, 25 (1–3), 185–192.
  • 5. Noda I., Green P.R., Satkowski M.M. Schechtman L.A. Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromolecules 2005, 6 (2), 580–586.
  • 6. Steinbüchel, A., Lütke-Eversloh, T. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 2003, 16 (2), 81–96.
  • 7. Lee W.H., Azizan M.N.M., Sudesh K. Effects of culture conditions on the composition of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Comamonas acidovorans. Polym. Degrad. Stab. 2004, 84 (1), 129–134.
  • 8. Allmendinger M., Eberhardt R., Luinstra G., Rieger B. The Cobalt-Catalyzed Alternating Copolymerization of Epoxides and Carbon Monoxide: A Novel Approach to Polyesters. J. Am. Chem. Soc. 2002, 124 (20), 5646–5647.
  • 9. Kramer J.W., Lobkovsky E.B., Coates G.W.: Practical β-lactone synthesis: epoxide carbonylation at I atm. Org. Lett. 2006, 8 (17), 3709–3012.
  • 10. Jedliński Z., Kowalczuk M., Kurcok P., Adamus G., Matuszowicz A., Sikorska W., Gross R.A., Xu J., Lenz, R.W.: Stereochemical Control in the Anionic Polymerization of β-Butyrolactone Initiated with Alkali-Metal Alkoxides. Macromolecules 1996, 29, 3773–3777.
  • 11. Rieth L.R., Moore D.R., Lobkovsky E.B., Coates G.W.: Single-Site β-Diiminate Zinc Catalysts for the Ring-Opening Polymerization of β-Butyrolactone and β-Valerolactone to Poly(3-hydroxyalkanoates). J. Am. Chem. Soc. 2002, 124 (51), 15239–15248.
  • 12. 12. Kurcok P., Śmiga M., Jedliński Z.: β -Butyrolactone Polymerization Initiated with Tetrabutylammonium Carboxylates. A Novel Approach to Biomimetic Polyesters Synthesis. J. Polym. Sci,. Part A: Polym.Chem. 2002, 40 (13), 2184–2189.
  • 13. Kawalec M., Śmiga-Matuszowicz M., Kurcok P.: Counterion and Solvent Effects on the Anionic Polymerization of β -Butyrolactone Initiated with Acetic Acid Salts. Eur. Polym J. 2008, 44 (11), 3556–3563.
  • 14. Kurcok P., Śmiga M., Jedliński Z. b-Butyrolactone Polymerization Initiated with Tetrabutylammonium Carboxylates. A Novel Approach to Biomimetic Polyesters Synthesis. J. Polym. Sci,. Part A: Polym. Chem. 2002, 40 (13), 2184–2189.
  • 15. Jedliński Z., Kurcok P., Kowalczuk M.: Sposób wytwarzania amorficznego poli([R,S]-3-hydroksykwasu masłowego). Patent RP 199104, 2008.
  • 16. Jedliński Z., Kurcok P., Kowalczuk M., Kasperczyk J.: Anionic Polymerization of 4-Methyl-2-Oxetanone. Makromol. Chem. 1986, 187, 1651–1656.
  • 17. Kawalec M., Coulembier O., Gerbaux P., Sobota M., De Winter J., Dubois P., Kowalczuk M., Kurcok P.: Traces Do Matter – Purity of 4-Methyl-2-Oxetanone and Its Effect on Anionic Ring-Opening Polymerization as Evidenced by Phosphazene Superbase Catalysis. Funct. React. Polym. 2012, 72 (8), 509–520.
  • 18. Kurcok P., Kowalczuk M., Kawalec M., Sobota M., Michalak M.: Sposób oczyszczania β-butyrolaktonu, zwłaszcza do syntezy poli(3-hydroksymaślanu) i jego kopolimerów. Zgł. Pat. P-393751 (2011).
  • 19. Sobota M.: Nowe materiały poliestrowe dla biodegradowalnych opakowań mono- i wielowarstwowych zawierające ataktyczny poli[(R,S)-3-hydroksymaślan]. Praca doktorska, Politechnika Śląska, Gliwice 2011.
  • 20. Kopinke F.-D., Mackenzie K.: Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). J. Anal. Appl. Pyrolysis 1997, 40–41, 43–53.
  • 21. Grassie N., Murray E.J., Holmes P.A.: The thermal degradation of poly(-(D)-β-hydroxybutyric acid): Part 1 – Identification and quantitative analysis of products Polym. Degrad. Stab. 1984, 6 (1), 47–61.
  • 22. Grassie N., Murray E.J., Holmes P.A.: The thermal degradation of poly(-(D)-β-hydroxybutyric acid): Part 2 – Changes in molecular weight. Polym. Degrad. Stab. 1984, 6 (2), 95–103.
  • 23. Grassie N., Murray E.J., Holmes P.A.: The thermal degradation of poly(-(D)-β-hydroxybutyric acid): Part 3 – The reaction mechanism. Polym. Degrad. Stab. 1984, 6 (3), 127–134.
  • 24. Kurcok P., Kowalczuk M., Adamus G., Jedliński Z., Lenz R.W.: Degradability of P(3HB). Correlation with Chemical Microstructure J. Macromol. Sci., Pure Appl. Chem. 1995, A32, 875–880.
  • 25. Kim K.J., Doi Y., Abe H.: Effects of residual metal compounds and chainend structure on thermal degradation of poly(3-hydroxybutyric acid). Polym. Degr. Stab. 2006, 91 (4), 769–777.
  • 26. Ariffin H., Nishida H., Shirai Y., Hassan M.A.: Determination of multiple thermal degradation mechanisms of poly(3-hydroxybutyrate) Polym. Degrad. Stab. 2008, 93 (8), 1433–1439.
  • 27. Nishida H., Ariffin H., Shirai Y., Hassan M.A.: Precise Depolymerization of Poly(3-hydroxybutyrate) by Pyrolysis w Biopolymers. Rijeka, Sciyo, 2010.
  • 28. Doi Y.: Microbial Polyesters. Weinheim, VCH, 1990.
  • 29. Ballisteri A., Garozzo D., Giufrrida M., Impallomeni G., Montaudo G.: Analytical degradation: An approach to the structural analysis of microbial polyesters by different methods J. Anal. Appl. Pyrolysis 1989, 16 (3), 239–253.
  • 30. Kim K.J., Doi Y., Abe H.: Effect of metal compounds on thermal degradation behavior of aliphatic poly(hydroxyalkanoic acid)s Polym. Degrad. Stab. 2008, 93 (4), 776–785.
  • 31. Kawalec M., Adamus G., Kurcok P., Kowalczuk M., Foltran I., Focarete L., Scandola M.: Carboxylate induced degradation of poly(3-hydroxybutyrate)s. Biomacromolecules 2007, 8 (4), 1053–1058.
  • 32. Kawalec M., Janeczek H., Adamus G., Kurcok P., Kowalczuk M., Scandola M.: The Study of Kinetics of Poly(R,S)-3-hydroxybutyrate Degradation Induced by Carboxylate. Macromol. Symp. 2008, 272, 65–9.
  • 33. Scandola M., Focarete L., Mazzocchetti L., Kowalczuk M., Kurcok P., Adamus G., Kawalec M.: Process for controlled degradation of polyhydroxyalkanoates and products obtainable therefrom US Patent Appl. US 2011/0275729, 2011.
  • 34. Kawalec M., Sobota M., Scandola M., Kowalczuk M., Kurcok P.: A convenient route to PHB macromonomers via anionically controlled moderate- temperature degradation of PHB. J. Polym. Sci., Part A: Polym. Chem. 2010, 48 (23), 5490–5497.
  • 35. Marchessault R.H., Nguyen S., Yu G.E.: Macromers of poly (hydroxyalkanoates). U.S. Pat. 6,534,599 B2, 2003.
  • 36. Ariffin H., Nishida H., Shiraib Y., Hassana M.A.: Highly selective transformation of poly[(R)-3-hydroxybutyric acid] into trans-crotonic acid by catalytic thermal degradation Polym. Degrad. Stab 2010, 95 (8), 1375–1381.
  • 37. Gilbert B.C., Schmith J.R.L., Milne E.C., Whitwood A.C., Taylor P.: Kinetic – EPR studies of the addition of aliphatic radicals to acrylic acid and related alkenes: the interplay of steric and electronic factors. J. Chem. Soc., Perkin. Trans. 2 1993, (11), 2025–2031.
  • 38. Wojnarovits L., Takacs E., Dajka K., Emmi S.S., Russo M., D’Angelantonio M.: Rate coefficient for the H atom reaction with acrylate monomers in aqueous solution. Tetrahedron 2003, 59 (42), 8353–8358.
  • 39. Michalak M., Kawalec M., Kurcok P.: Reactive mono- and di-epoxyfunctionalized poly(3-hydroxybutyrate)s. Synthesis and characterization. Polym. Degrad. Stab. 2012, 97 (10), 1861–1870.
  • 40. Sparks J., Scholz C.: Synthesis and characterization of a cationic poly(β-hydroxyalkanoate). Biomacromolecules 2008, 9 (8), 2091–2096.
  • 41. Gorzynski Smith J.: Synthetically useful reactions of epoxides. Synthesis 1984, 8, 629–656.
  • 42. Schneider C.: Synthesis of 1,2-difunctionalized fine chemicals through catalytic, enantioselective ring-opening reactions of epoxides. Synthesis 2006, 23, 3919–3944.
  • 43. Parker R.E., Isaacs N.S.: Mechanisms of epoxide reactions. Chem. Rev. 1959, 59 (4), 737–799.
  • 44. Yadav J.S., Reddy B.V.S., Harikishan K., Madan C., Narsaiah A.V.: Carbon tetrabromide: an efficient catalyst for regioselective ring opening of epoxides with alcohols and water. Synthesis 2005, 17, 2897–2900.
  • 45. Michalak M., Marek A.A., Zawadiak J., Kawalec M., Kurcok P.: Synthesis of PHB-based carrier for drug delivery systems with pH-controlled release. Eur. Polym. J. 2013, 49, 4149–56.
  • 46. Bartczak Z., Galeski A., Kowalczuk M., Sobota M., Malinowski R.: Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. Eur. Polym. J. 2013, 49, 3630–3641.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cdc34ca-e97f-4b9b-bec4-77b56ca17a1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.