PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of n-hexane on a low-cost adsorbent obtained from waste tyres and its microwave regeneration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work investigates adsorption of n-hexane on activated tyre pyrolysis char (ATPC) and granular activated carbon (GAC) as a reference material in a fixed-bed column. Microwave-assisted regeneration is also considered. The adsorbed amount of n-hexane on ATPC is in the range of 37–58 mg/g. Microwave-assisted desorption of ATPC samples enables the recovery of up to 95% of adsorbed n-hexane in this non-optimized microwave setup with the efficiency of microwave energy conversion into heat of only 5–6%. For the 50% breakthrough time, ATPC and GAC are able to purify the n-hexane gas volumes in the ranges of 20–90 and 935–1240 cm3/g, respectively. While adsorption kinetics is not satisfactorily described by pseudo-first and pseudo-second order kinetic models, it is very well reflected by a family of dynamic adsorption models, which are modelled with a single logistic function. Internal diffusion is likely the rate limiting step during adsorption on ATPC, while external and internal diffusion likely plays a role in adsorption to GAC. Although microwave-assisted regeneration is performed in a general purpose microwave reactor, both adsorbents show excellent performance and are very good candidates for the adsorption process. Preliminary results show that magnetite can further reduce microwave energy consumption.
Rocznik
Strony
57–--80
Opis fizyczny
Bibliogr. 76 poz., wykr., tab., rys.
Twórcy
  • Chemical and Process Engineering Department, Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warszawa, Poland
  • Chemical and Process Engineering Department, Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warszawa, Poland
  • Chemical and Process Engineering Department, Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warszawa, Poland
Bibliografia
  • 1. Acosta R., Fierro V., Martinez de Yuso A., Nabarlatz D., Celzard A., 2016. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char. Chemosphere, 149, 168–176. DOI: 10.1016/j.chemo sphere.2016.01.093.
  • 2. Ania C.O., Menéndez J.A., Parra J.B., Pis J.J., 2004. Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration. Carbon, 42, 1383–1387. DOI: 10.1016/j.carbon.2004.01.010.
  • 3. Ania C.O., Parra J.B., Menéndez J.A., Pis J.J., 2005. Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons. Microporous Mesoporous Mater., 85, 7–15. DOI: 10.1016/j.micromeso.2005.06.013.
  • 4. Ania C.O., Parra J.B., Menéndez J.A., Pis J.J., 2007. Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals. Water Res., 41, 3299–3306. DOI: 10.1016/j.watres.2007.05.006
  • 5. Antoniou N., Stavropoulos G., Zabaniotou A., 2014. Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system. Renewable Sustainable Energy Rev., 39, 1053–1073. DOI: 10.1016/j.rser.2014.07.143.
  • 6. Bathen D., 2003. Physical waves in adsorption technology – an overview. Sep. Purif. Technol., 33, 163–177. DOI: 10.1016/S1383-5866(03)00004-2.
  • 7. Bohart G.S., Adams E.Q., 1920. Some aspects of the behavior of charcaol with respect to chlorine. J. Am. Chem. Soc., 42, 523–544. DOI: 10.1021/ja01448a018.
  • 8. Burkholder H. R., Fanslow G. E. , Bluhm D., 1986. Recovery of ethanol from a molecular sieve by using dielectric heating. Ind. Eng. Chem. Fundam., 25, 414–416. DOI: 10.1021/i100023a019.
  • 9. Çalişkan E., Bermúdez J.M., Parra J.B., Menéndez J.A., Mahramanlıoğlu M., Ania C.O., 2012. Low temperaturę regeneration of activated carbons using microwaves: Revising conventional wisdom. J. Environ. Manage., 102, 134–140. DOI: 10.1016/j.jenvman.2012.02.016.
  • 10. Cha C.Y., Carlisle C.T., 2001. Microwave process for volatile organic compound abatement. J. Air Waste Manage. Assoc., 51, 1628–1641. DOI: 10.1080/10473289.2001.10464389.
  • 11. Cha C.Y., Wallace S., George A.H., Rogers S., 2004. Microwave Technology for Treatment of Fume Hood Exhaust. J. Envirnomental Eng., 130, 338–348. DOI: 10.1061/(ASCE)0733-9372(2004)130:3(338).
  • 12. Chatterjee A., Schiewer S., 2011. Biosorption of cadmium(II) ions by citrus peels in a packed bed column: Effect of process parameters and comparison of different breakthrough curve models. CLEAN – Soil Air Water, 39, 874–881. DOI: 10.1002/clen.201000482.
  • 13. Cherbański R., 2018. Regeneration of granular activated carbon loaded with toluene – Comparison of microwave and conductive heating at the same active powers. Chem. Eng. Process. Process Intensif., 123, 148–157. DOI: 10.1016/j.cep.2017.11.008.
  • 14. Cherbański R., Komorowska-Durka M., Stefanidis G.D., Stankiewicz A.I., 2011. Microwave swing regeneration vs temperature swing regeneration – Comparison of desorption kinetics. Ind. Eng. Chem. Res., 50, 8632–8644. DOI: 10.1021/ie102490v.
  • 15. Cherbański R., Molga E., 2009. Intensification of desorption processes by use of microwaves – An overview of possible applications and industrial perspectives. Chem. Eng. Process. Process Intensif., 48, 48–58. DOI: 10.1016/j.cep.2008.01.004.
  • 16. Cherbański R., Rudniak L., 2013. Modelling of microwave heating of water in a monomode applicator – Influence of operating conditions. Int. J. Therm. Sci., 74, 214–229. DOI: 10.1016/j.ijthermalsci.2013.07.001.
  • 17. Chu K.H., 2020. Breakthrough curve analysis by simplistic models of fixed bed adsorption: In defense of the century-old Bohart–Adams model. Chem. Eng. J., 380, 122513. DOI: 10.1016/j.cej.2019.122513.
  • 18. Clean Air Technology E.P.A., 1999. Choosing an adsorption system for VOC: carbon, zeolite or polymers? CATC Tech. Bull., EPA-456/F-99-004. Available at: https://www3.epa.gov/ttncatc1/dir1/fadsorb.pdf.
  • 19. Coss P.M., Cha C.Y., 2000. Microwave regeneration of activated carbon used for removal of solvents from vented air. J. Air Waste Manage. Assoc., 50, 529–535. DOI: 10.1080/10473289.2000.10464038.
  • 20. Dehdashti A., Khavanin A., Rezaee A., Asilian H., 2011. Regeneration of granular activated carbon saturated with gaseous toluene by microwave irradiation. Turkish J. Eng. Env. Sci., 35, 49–58. DOI: 10.3906/muh-1004-13.
  • 21. Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amendi Directive 1999/13/EC. Off. J. L., 143, 87–96.
  • 22. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Off. J. L., 334, 17–119.
  • 23. Durka T., Stefanidis G.D., Van Gerven T., Stankiewicz A.I., 2011. Microwave-activated methanol steam reforming for hydrogen production. Int. J. Hydrog. Energy, 36, 12843–12852. DOI: 10.1016/j.ijhydene.2011.07.009.
  • 24. ETRMA, 2019. End of Life Tyres Management – Europe – 2017. Brussels, 19.11.2019.
  • 25. Fayaz M., Shariaty P., Atkinson J.D., Hashisho Z., Phillips J. H., Anderson J.E., Nichols M., 2015. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon. Environ. Sci. Technol., 49, 4536–4542. DOI: 10.1021/es505953c.
  • 26. Foo K.Y., Hameed B.H., 2012a. A cost effective method for regeneration of durian shell and jackfruit peel activated carbons by microwave irradiation. Chem. Eng. J., 193–194, 404–409. DOI: 10.1016/j.cej.2012.04.055.
  • 27. Foo K.Y., Hameed B.H., 2012b. A rapid regeneration of methylene blue dye-loaded activated carbons with microwave heating. J. Anal. Appl. Pyrolysis, 98, 123–128. DOI: 10.1016/j.jaap.2012.07.006.
  • 28. Foo K.Y., Hameed B.H., 2012c. Microwave-assisted regeneration of activated carbon. Bioresour. Technol., 119, 234–240. DOI: 10.1016/j.biortech.2012.05.061.
  • 29. Gangurde L.S., Sturm G.S.J., Devadiga T.J., Stankiewicz A.I., Stefanidis G.D., 2017. Complexity and challenges in noncontact high temperature measurements in microwave-assisted catalytic reactors. Ind. Eng. Chem. Res., 56, 13379–13391. DOI: 10.1021/acs.iecr.7b02091.
  • 30. Han R., Wang Y., Sun Q., Wang L., Song J., He X., Dou C., 2010. Malachite green adsorption onto natural zeolite and reuse by microwave irradiation. J. Hazard. Mater., 175, 1056–1061. DOI: 10.1016/j.jhazmat.2009.10.118.
  • 31. Han Z., Kong S., Sui H., Li X., Zhang Z., 2019. Preparation of carbon-silicon doping composite adsorbent material for removal of VOCs. Materials, 12, 2438. DOI: 10.3390/ma12152438.
  • 32. Hashisho Z., Rood M., Botich L., 2005. Microwave-swing adsorption to capture and recover vapors from air streamswith activated carbon fiber cloth. Environ. Sci. Technol., 39, 6851–6859. DOI: 10.1021/es050338z.
  • 33. Hubbe M.A., Azizian S., Douven S., 2019. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioRes., 14, 7582–7626.
  • 34. Kandasamy J., Gokalp I., 2015. Pyrolysis, combustion, and steam gasification of various types of scrap tires for energy recovery. Energy Fuels, 29, 346–354. DOI: 10.1021/ef502283s.
  • 35. Kim K.J., Ahn H.G., 2012. The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous Mesoporous Mater., 152, 78–83. DOI: 10.1016/j.micromeso.2011.11.051.
  • 36. Kim K.J., Kim Y.H., Jeong W.J., Park N.-C., Jeong S.-W., Ahna H.-G., 2007. Adsorption-desorption characteristics of volatile organic compounds over various zeolites and their regeneration by microwave irradiation. Stud. Surf. Sci. Catal., 165, 223–226. DOI: 10.1016/S0167-2991(07)80304-1.
  • 37. Kotkowski T., Cherbański R., Molga E., 2018. Acetone adsorption on CO2-activated tyre pyrolysis char – Thermo-gravimetric analysis. Chem. Process Eng., 39, 233–246. DOI: 10.24425/122946.
  • 38. Kotkowski T., Cherbański R., Molga E., 2020. Tyre-derived activated carbon – textural properties and modeling of adsorption equilibrium of n-hexane. Chem. Process Eng., 41, 25–44. DOI: 10.24425/cpe.2019.130221.
  • 39. Kuśmierek K., Świątkowski A., Kotkowski T., Cherbański R., Molga E., 2020a. Adsorption of bisphenol a from aqueous solutions by activated tyre pyrolysis char – Effect of physical and chemical activation. Chem. Process Eng., 41, 129–141. DOI: 10.24425/cpe.2020.132536.
  • 40. Kuśmierek K., Świątkowski A., Kotkowski T., Cherbański R., Molga E., 2020b. Adsorption properties of activated tire pyrolysis chars for phenol and chlorophenols. Chem. Eng. Technol., 43, 770–780. DOI: 10.1002/ceat. 201900574.
  • 41. Kuśmierek K., Świątkowski A., Kotkowski T., Cherbański R., Molga E., 2021a. Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part I. Preparation of adsorbent and adsorption from gas phase. J. Anal. Appl. Pyrolysis, 157, 105205. DOI: 10.1016/j.jaap.2021.105205.
  • 42. Kuśmierek K., Świątkowski A., Kotkowski T., Cherbański R., Molga E., 2021b. Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part II. Adsorption from aqueous phase. J. Anal. Appl. Pyrolysis, 158, 105206. DOI: 10.1016/j.jaap.2021.105206.
  • 43. Lagergren S., 1898. About the theory of so-called adsorption of soluble substances. Handlingar, 24, 1–39.
  • 44. Liu X., Quan X., Bo L., Chen S., Zhao Y., 2004. Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon, 42, 415–422. DOI: 10.1016/j.carbon.2003.12.032.
  • 45. López G., Olazar M., Artetxe M., Amutio M., Elordi G., Bilbao J., 2009. Steam activation of pyrolytic tyre char at different temperatures. J. Anal. Appl. Pyrolysis, 85, 539–543. DOI: 10.1016/j.jaap.2008.11.002.
  • 46. Mao H., Zhou D., Hashisho Z., Wang S., Chen H., Wang H. H., Lashaki M. J., 2015a. Microporous activated carbon from pinewood and wheat straw by microwave-assisted KOH treatment for the adsorption of toluene and acetone vapors. RSC Adv., 5, 36051–36058. DOI: 10.1039/C5RA01320H.
  • 47. Mao H., Zhou D., Hashisho Z., Wang S., Chen H., Wang H.H., 2015b. Constant power and constant temperaturę microwave regeneration of toluene and acetone loaded on microporous activated carbon from agricultural residue. J. Ind. Eng. Chem., 21, 516–525. DOI: 10.1016/j.jiec.2014.03.014.
  • 48. Meier M., Turner M., Vallee S., Conner W.C., Lee K.H., Yngvesson K.S., 2009. Microwave regeneration of zeolites in a 1 meter column. AIChE J., 55, 1906–1913. DOI: 10.1002/aic.11793.
  • 49. Mui E.L.K., Ko D.C.K., McKay G., 2004. Production of active carbons from waste tyres – a review. Carbon, 42, 2789–2805. DOI: 10.1016/j.carbon.2004.06.023.
  • 50. Nigar H., Sturm G.S.J., Garcia-Baños B., Peñaranda-Foix F.L., Catalá-Civera J.M., Mallada R., Stankiewicz A., Santamaría J., 2019. Numerical analysis of microwave heating cavity: Combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed. Appl. Therm. Eng., 155, 226–238. DOI: 10.1016/j.applthermaleng. 2019.03.117.
  • 51. OriginLab Corporation, 2021. OriginPro 8 SR0.
  • 52. Plazinski W., Rudzinski W., Plazinska A., 2009. Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv. Colloid Interface Sci., 152, 2–13. DOI: 10.1016/j.cis.2009.07.009.
  • 53. Polaert I., Estel L., Huyghe R., Thomas M., 2010. Adsorbents regeneration under microwave irradiation for dehydration and volatile organic compounds gas treatment. Chem. Eng. J., 162, 941–948. DOI: 10.1016/j.cej.2010.06.047.
  • 54. Price D.W., Schmidt P.S., 1998. VOC recovery through microwave regeneration of adsorbents: Process designstudies. J. Air Waste Manage. Assoc., 48, 1135–1145. DOI: 10.1080/10473289.1998.10463758.
  • 55. Quan X., Liu X., Bo L., Chen S., Zhao Y., Cui X., 2004. Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation. Water Res., 38, 4484–4490. DOI: 10.1016/j.watres.2004.08.031.
  • 56. Reuß J., Bathen D., Schmidt-Traub H., 2002. Desorption by microwaves: Mechanisms of multicomponent mixtures. Chem. Eng. Technol., 25, 381–384. DOI: 10.1002/1521-4125(200204)25:4<381::AID-CEAT381>3.0.CO;2-0.
  • 57. Robers A., Figura M., Thiesen P.H., Niemeyer B., 2005. Desorption of odor-active compounds by microwaves, ultrasound, and water. AIChE J., 51, 502–510. DOI: 10.1002/aic.10334.
  • 58. Roussy G., Chenot P., 1981. Selective energy supply to adsorbed water and nonclassical thermal process during microwave dehydration of zeolite. J. Phys. Chem., 85, 2199–2203. DOI: 10.1021/j150615a013.
  • 59. Roussy G., Zoulalian A., Charreyre M., Thiebaut J.-M., 1984. How microwaves dehydrate zeolites. J. Phys. Chem., 88, 5702–5708. DOI: 10.1021/j150667a049.
  • 60. Rudzinski W., Plazinski W., 2007. Studies of the kinetics of solute adsorption at solid/solution interfaces: On the possibility of distinguishing between the diffusional and the Surface reaction kinetic models by studying the pseudo-first-order kinetics. J. Phys. Chem. C, 111, 15100–15110. DOI: 10.1021/jp073249c.
  • 61. Sharma V.K., Mincarini M., Fortuna F., Cognini F., Cornacchia G., 1998. Disposal of waste tyres for energy recovery and safe environment–Review. Energy Convers. Manage., 39, 511–528. DOI: 10.1016/S0196-8904(97)00044-7.
  • 62. Sienkiewicz M., Kucinska-Lipka J., Janik H., Balas A., 2012. Progress in used tyres management in the European Union: A review. Waste Manage., 32, 1742–1751. DOI: 10.1016/j.wasman.2012.05.010.
  • 63. Simonin J.P., 2016. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J., 300, 254–263. DOI: 10.1016/j.cej.2016.04.079.
  • 64. Stankiewicz A.I., Nigar H., 2020. Beyond electrolysis: old challenges and new concepts of electricity-driven chemical reactors. React. Chem. Eng., 5, 1005–1016. DOI: 10.1039/d0re00116c.
  • 65. Tan K.L., Hameed B.H., 2017. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng., 74, 25–48. DOI: 10.1016/J.JTICE.2017.01.024.
  • 66. Wang S., Huang L., Zhang Y., Li L., Lu X., 2021. A mini-review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects. Chin. J. Chem. Eng., 31, 153–163. DOI: 10.1016/j.cjche.2020.11.018.
  • 67. Wang W., Li M., Zeng Q., 2015. Adsorption of chromium (VI) by strong alkaline anion exchange fiber in a fixed-bed column: Experiments and models fitting and evaluating. Sep. Purif. Technol., 149, 16–23. DOI: 10.1016/j.seppur. 2015.05.022.
  • 68. Weber W.J., Morris J.C., 1963. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div., 89, 31–59. DOI: 10.1061/JSEDAI.0000430.
  • 69. Witkiewicz K., Nastaj J., 2014. Modeling of microwave-assisted regeneration of selected adsorbents loaded with water or toluene. Drying Technol., 32, 1369–1385. DOI: 10.1080/07373937.2014.900506.
  • 70. World Business Council for Sustainable Development, 2008. Managing End-of-Life Tires. Available at: https://www.wbcsd.org/Sector-Projects/Tire-Industry-Project/Resources/Managing-End-of-Life-Tires.
  • 71. Wu F.C., Tseng R.L., Juang R.S., 2009. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J., 153, 1–8. DOI: 10.1016/j.cej.2009.04.042.
  • 72. Yan J., Xue Y., Long L., Zeng Y., Hu X., 2018. Adsorptive removal of As(V) by crawfish shell biochar: batch and column tests. Environ. Sci. Pollut. Res., 25, 34674–34683. DOI: 10.1007/s11356-018-3384-1.
  • 73. Yang Z., Yi H., Tang X., ZhaoS., Yu Q., Gao F., Zhou Y., Wang J., Huang Y., Yang K., Shi Y., 2017. Potential demonstrations of “hot spots” presence by adsorption-desorption of toluene vapor onto granular activated carbon under microwave radiation. Chem. Eng. J., 319, 191–199. DOI: 10.1016/j.cej.2017.02.157.
  • 74. Yoon Y.H. , Nelson J.H., 1984. Application of Gas Adsorption Kinetics I. A Theoretical Model for Respirator Cartridge Service Life. Am. Ind. Hyg. Assoc. J., 45, 509–516. DOI: 10.1080/15298668491400197.
  • 75. Yuen F.K., Hameed B.H., 2009. Recent developments in the preparation and regeneration of activated carbons by microwaves. Adv. Colloid Interface Sci., 149, 19–27. DOI: 10.1016/j.cis.2008.12.005.
  • 76. Zhang D., Cao J., Wu G., Cui L., 2018. Dynamic adsorption model fitting studies of typical VOCs using commercial activated carbon in a fixed bed. Water Air Soil Pollut., 229, 178. DOI: 10.1007/s11270-018-3763-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cd78c40-4b9c-41c8-99a0-a243398cb437
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.