PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation analysis for the efficiency enhancement of Sb2S3 solar cell using SCAPS-1D

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The simulation analysis was performed to enhance the efficiency of Sb2 S3 solar cells using the SCAPS-1D software. The Sb2 S3 compound was used as the absorber layer in the solar cell. The simulation was conducted to verify the efficiency and accuracy of the results obtained from the program. The results were found to be in agreement with the practical results. The original cell’s efficiency was 11.47% with a fill factor of 61.18%, and after the simulation, the efficiency was found to be 11.43% with a fill factor of 61.2%. To enhance the efficiency of the solar cell, a reflective background layer (BSL) was added. Different BSL layers were examined, including SnS, Si, CIGS, CZTSSe, and CUS bS3 , and the best reflective layer was found to be CUSbS3 . The solar cell structure was designed as follows: glass/Mo/CUSbS3 /Sb2 S3 /CdS/i:ZnO/AL:ZnO. After adding the reflective layer, the efficiency of the solar cell was found to be 20.59% with a fill factor of 87.53%. The results suggest that adding reflective layers to solar cells can enhance their performance and increase their efficiency.
Wydawca
Rocznik
Strony
19--29
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Department of Mechanics Engineering, College of Al-Shirgat Engineering, Tikrit University, Iraq
  • Department of Mechanics Engineering, College of Al-Shirgat Engineering, Tikrit University, Iraq
  • Department of Mechanics Engineering, College of Al-Shirgat Engineering, Tikrit University, Iraq
Bibliografia
  • Abdelbaki, Ch., & Labbani, R. (2017). Study of CZTS and CZTSSe solar cells for buffer layers selection. Applied Surface Science, 424(2), 251–255. https://doi.org/10.1016/j.apsusc.2017.05.027.
  • Berg, D.M., Djemour, R., Gütay, L., Zoppi, G., Siebentritt, S., & Dale, P.J. (2012). Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films, 520(19), 6291–6294. https://doi.org/10.1016/J.TSF.2012.05.085.
  • Boumaour, M., Sali, S., Kermadi, S., Zougar, L., Bahfir, A., & Chaieb, Z. (2019). High efficiency silicon solar cells with back ZnTe layer hosting IPV effect: a numerical case study. Journal of Taibah University for Science, 13(1), 696–703. https://doi.org/10.1080/16583655.2019.1623476.
  • Chen, J., Liu, R., Zhu, L., Chen, W., Dong, C., Wan, Z., Cao, W., Zhang, X., Peng, R., & Wang, M. (2021). Sb2S3-based bulk/nano planar heterojunction film solar cells with graphene/polymer composite layer as hole extracting interface. Materials Letters, 300, 130190. https://doi.org/10.1016/j.matlet.2021.130190.
  • Chen, Z. & Chen, G. (2020). The effect of absorber thickness on the planar Sb2S3 thin film solar cell: Trade-off between light absorption and charge separation. Solar Energy, 201, 323–329. https://doi.org/10.1016/j.solener.2020.02.074.
  • Choi, Y.C., Lee, D.U., Noh, J.H., Kim, E.K., & Seok, S.I. (2014a). Highly improved Sb2S3 sensitized‐inorganic–organic hetero-junction solar cells and quantification of traps by deep‐level transient spectroscopy. Advanced Functional Materials, 24(23), 3587–3592. https://doi.org/10.1002/adfm.201304238.
  • Choi, Y.C., Lee, Y.H., Im, S.H., Noh, J.H., Mandal, T.N., Yang, W.S., & Seok, S.I. (2014b). Efficient inorganic‐organic hetero-junction solar cells employing Sb2(Sx/Se1‐x)3 graded‐composition sensitizers. Advanced Energy Materials, 4(7), 1301680. https://doi.org/10.1002/aenm.201301680.
  • Dixit, K. (2023). Numerical Simulation and Modeling of thin Film Heterojunction Photovoltaic Cells and its degradation analysis [Doctoral dissertation]. Dayalbag Educational Institute. https://shodhgangotri.inflibnet.ac.in/handle/20.500.14146/11273.
  • Eisele, W., Ennaoui, A., Schubert-Bischoff, P., Giersig, M., Pettenkofer, C., Krauser, J., Lux-Steiner, M., Zweigart, S., & Karg, F. (2003). XPS, TEM, and NRA investigations of Zn(Se,OH)/Zn(OH)2 films on Cu(In,Ga)(S,Se)2 substrates for highly efficient solar cells. Solar Energy Materials and Solar Cells, 75(1–2), 17–26. https://doi.org/10.1016/S0927-0248(02)00104-6.
  • Faheem, M.B., Khan, B., Feng, C., Farooq, M.U., Raziq, F., Xiao, Y., & Li, Y. (2019). All-inorganic perovskite solar cells: energetics, key challenges, and strategies toward commercialization. ACS Energy Letters, 5(1), 290–320. https://doi.org/10.1021/acsenergylett.9b02338.
  • Green, M.A., Ho-Baillie, A., & Snaith, H.J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8(7), 506–514. https://doi.org/10.1038/NPHOTON.2014.134.
  • Green, M.A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E.D. (2016). Solar cell efficiency tables (version 48). Progress in Photovoltaics: Research and Applications, 24, 905–913. https://doi.org/10.1002/pip.2788.
  • Gupta, V.K., Sethi, B., Upadhyay, N., Kumar, S., Singh, R., & Singh, L.P. (2011). Iron (III) selective electrode based on S-meth-yl N-(methylcarbamoyloxy) thioacetamide as a sensing material. International Journal of Electrochemical Science, 6(3), 650–663. http://www.electrochemsci.org/papers/vol6/6030650.pdf.
  • Jaramillo-Quintero, O.A., Baron-Jaimes, A., Miranda-Gamboa, R.A., & Rincon, M.E. (2021). Cadmium-free ZnS interfacial layer for hydrothermally processed Sb2S3 solar cells. Solar Energy, 224, 697–702. https://doi.org/10.1016/j.sole-ner.2021.06.037.
  • Jin, X., Zhang, L., Jiang, G., Liu, W., & Zhu, C. (2017). High open-circuit voltage of ternary Cu2GeS3 thin film solar cells from combustion synthesized Cu-Ge alloy. Solar Energy Materials and Solar Cells, 160, 319–327. https://doi.org/10.1016/j.solmat.2016.11.001.
  • Koltsov, M., Gopi, S.V., Raadik, T., Krustok, J., Josepson, R., Gržibovskis, R., Vembris, A., & Spalatu, N. (2023). Development of Bi2S3 thin film solar cells by close-spaced sublimation and analysis of absorber bulk defects via in-depth photolumi-nescence analysis. Solar Energy Materials and Solar Cells, 254, 112292. https://doi.org/10.1016/j.solmat.2023.112292.
  • Kondrotas, R., Chen, C., & Tang, J. (2018). Sb2S3 solar cells. Joule, 2(5), 857–878. https://doi.org/10.1016/j.joule.2018.04.003.
  • Lee, Y.-J., Kim, B.-S., & Ifitiquar, S.M., Park, Ch., Ji, Y. (2014). Silicon solar cells: Past, present and the future. Journal of the Korean Physical Society, 65(3), 355–361. https://doi.org/10.3938/jkps.65.355.
  • Lee, Y.S., Chua, D., Brandt, R.E., Siah, S.C., Li, J.V., Mailoa, J.P., Lee, S.W., Gordon, R.G., & Buonassisi, T. (2014). Atomic layer deposited gallium oxide buffer layer enables 1.2 V open‐circuit voltage in cuprous oxide solar cells. Advanced Materials, 26(27), 4704–4710. https://doi.org/10.1002/adma.201401054.
  • Lewis, N.S. (2016). Research opportunities to advance solar energy utilization. Science, 351(6271). https://doi.org/10.1126/science.aad1920.
  • Li, J., Xiong, L., Hu, X., Liang, J., Chen, C., Ye, F., Li, J., Liu, Y., Shao, W., Wang., T., Tao. Ch., & Fang, G. (2022). Manipulating the morphology of CdS/Sb2S3 heterojunction using a Mg-doped tin oxide buffer layer for highly efficient solar cells. Journal of Energy Chemistry, 66, 374–381. https://doi.org/10.1016/j.jechem.2021.08.029.
  • Liu, X., Xiao, X., Yang, Y., Xue, D.-J., Li, D.B., Chen, C., Lu, S., Gao, L., He, Y., Beard, M.C., Wang, G., Chen, S., & Tang, J. (2017). Enhanced Sb2 Se3 solar cell performance through theory‐guided defect control. Progress in Photovoltaics: Research and Applications, 25(10), 861–870. https://doi.org/10.1002/pip.2900.
  • Louwen, A., van Sark, W., Schropp, R., & Faaij, A. (2016). A cost roadmap for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 147, 295–314. https://doi.org/10.1016/j.solmat.2015.12.026.
  • Ma, G., Wang, C., Zheng, Q., Jin, M., Cheng, S., Lai, Y., Yu, J., & Jia, H. (2020). Ti doped Sb2 S3 thin film for improved performance of inorganic-organic hybrid solar cells. Materials Letters, 260, 126879. https://doi.org/10.1016/j.matlet.2019.126879.
  • Michaelson, H.B. (1977). The work function of the elements and its periodicity. Journal of Applied Physics, 48(11), 4729–4733. https://doi.org/10.1063/1.323539.
  • Moon, S.-J., Itzhaik, Y., Yum, J.-H., Zakeeruddin, S.M., Hodes, G., & Grätzel, M. (2010). Sb2 S3 -based mesoscopic solar cel using an organic hole conductor. The Journal of Physical Chemistry Letters, 1(10), 1524–1527. https://doi.org/10.1021/jz100308q.
  • Mukherjee, R. (2020). Electrical, thermal, and elastic properties of methylammonium lead bromide single crystal. Bulletin of Materials Science, 43(1), 197. https://doi.org/10.1007/s12034-020-02164-w.
  • Mukherjee, R., Laves, G., & Nadgorny, B. (2014). Enhancement of high dielectric permittivity in CaCu3Ti4O12/RuO2 composites in the vicinity of the percolation threshold. Applied Physics Letters, 105(7). https://doi.org/10.1063/1.4893009.
  • Nair, P.K., Garcia‐Angelmo, A.R., & Nair, M.T.S. (2016). Cubic and orthorhombic SnS thin‐film absorbers for tin sulfide solar cells. Physica Status Solidi (A), 213(1), 170–177. https://doi.org/10.1002/pssa.201532426.
  • Olopade, M., Adewoyin, A., Chendo, M., & Bolaji, A. (2017). The study of some materials as buffer layer in copper antimony sulphide (CUSbS2) solar cell using SCAPS 1-D. In IEEE 44th Photovoltaic Specialist Conference (PVSC) (pp. 2381–2384). https://doi.org/10.1109/PVSC.2017.8366580.
  • Omrani, M.K., Minbashi, M., Memarian, N., & Kim, D.-H. (2018). Improve the performance of CZTSSe solar cells by applying a SnS BSF layer. Solid-State Electronics, 141, 50–57. https://doi.org/10.1016/j.sse.2017.12.004.
  • Polman, A., Knight, M., Garnett, E.C., Ehrler, B., & Sinke, W.C. (2016). Photovoltaic materials: Present efficiencies and future challenges. Science, 352(6283). https://doi.org/10.1126/science.aad4424.
  • Rau, U., Schmidt, M., Jasenek, A., Hanna, G., & Schock, H.W. (2001). Electrical characterization of Cu(In,Ga)Se2 thin-film solar cells and the role of defects for the device performance. Solar Energy Materials and Solar Cells, 67(4), 37–43. https://doi.org/10.1016/S0927-0248(00)00273-7.
  • Snaith, H.J. (2018). Present status and future prospects of perovskite photovoltaics. Nature Materials, 17(5), 372–376.‏ https:// doi.org/10.1038/s41563-018-0071-z.
  • Xiao, Y., Wang, H., & Kuang, H. (2020). Numerical simulation and performance optimization of Sb2 S3 solar cell with a hole transport layer. Optical Materials, 108, 110414. https://doi.org/10.1016/j.optmat.2020.110414.
  • Xue, D.-J., Liu, S.-Ch., Dai, Ch.M., Chen, S., He, Ch., Zhao, L., Hu, J.-S., & Wan, L.-J. (2017). GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation. Journal of the American Chemical Society, 139(2), 958–965. https://doi.org/10.1021/jacs.6b11705.
  • Zeng, K., Xue, D.-J., & Tang, J. (2016). Antimony selenide thin-film solar cells. Semiconductor Science and Technology, 31(6), 063001. https://doi.org/10.1088/0268-1242/31/6/063001.
  • Zhang, F., Silver, S.H., Noel, N.K., Ullrich, F., Rand, B.P., & Kahn, A. (2020). Ultraviolet photoemission spectroscopy and Kelvin probe measurements on metal halide perovskites: Advantages and pitfalls. Advanced Energy Materials, 10(26), 1903252. https://doi.org/10.1002/aenm.201903252.
  • Zhang, W., Eperon, G.E., & Snaith, H.J. (2016). Metal halide perovskites for energy applications. Nature Energy, 1(6), 16048. https://doi.org/10.1038/nenergy.2016.48.
  • Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-B., Duan, H.-S., Hong, Z., You, J., Liu, Y., & Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542–546. https://doi.org/10.1126/science.1254050.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cd5960c-9949-4823-a88c-5ff6e956477c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.