PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Adhesive Joint End Shapes on the Ultimate Load-Bearing Capacity of Carbon Fibre-Reinforced Polymer/Steel Bonded Joints

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports the experimental results of a study investigating the effect of adhesive joint end shapes on the load-bearing capacity of carbon fibre-reinforce polymer (CFRP) and steel bonded joints. In the study, samples with new proprietary types of CFRP strip ends were examined. All samples were subjected to tensile quasi-static loading with a load rate of 1.5 mm/min. A total of 60 samples with CFRP/steel single overlap joints were tested to determine their ultimate load-bearing capacity, effective bond length and failure modes for the above variables. 8 joint end shapes of normal CFRP modulus with three lengths of CFRP overlap and one CFRP cross section (20 x 1.4 mm) were used in this study. Laboratory test results showed that joint end shape has visible effect on the load capacity of the CFRP/steel bonded joints. The load-bearing capacity of the samples with a regular joint end was up to 28 % lower than that of the samples with a plan-shaped end and 30 % lower than that of the samples with a chamfered end with adhesive outflow. The differences in the results decreased with increase in joint end length towards the effective end length.
Twórcy
autor
  • Department of Roads and Bridges, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin
Bibliografia
  • 1. Kowal M. & Szala M. Diagnosis of the microstructural and mechanical properties of over century-old steel railway bridge components. Engineering Failure Analysis. 2020; 110(104447): 1-17.
  • 2. Bień J. Mosty kolejowe – uszkodzenia, awarie, katastrofy. In: Proc. of XXIV Konferencja Naukowo-Technicznej Awarie budowlane, Szczecin-Międzyzdroje, Poland. 2009; 45–62.
  • 3. Jara M. Strengthening and Retrofitting of Steel Bridges, Springer Nature Singapore Pte Ltd., t. 9, 2018.
  • 4. Rudawska A., Pawlak P., Miturska I., Stančeková D., Chyra M. Comparative Analysis of Welded and Adhesive Joints Strength Made of Acid-Resistant Stainless Steel Sheets. Advances in Science and Technology Research Journal. 2017; 11(4): 97–102.
  • 5. Charles D. Application of Advanced Materials. A Case Study on Actual Bridge Performance. NSF-REU; 2006.
  • 6. Phares B.M., Wipf T.J., Abu-Hawash F.W.A., Lee Y.-S. Strengthening of Steel Girder Bridges Using FRP. Ames, Iowa, 2003.
  • 7. Moy S.S.Y. FRP composites. Life extension and strengthening of metallic structures. ICE design and practice guides. Institution of Civil Engineers; 2001.
  • 8. Harries K.A. FRP International – the official newsletter of the International Institute for FRP in Construction. 2001; 8(3).
  • 9. Łagoda G., Łagoda M. Strengthening steel bridge across Vistula River in Poland. In: Proc. of the Sustainable Infrastructure Environment Friendly, Safe and Resource Efficient Bangkok, Thailand. 2009; 96.
  • 10. Zhao X.L., Zhang L. State-of-the-art review on FRP strengthened steel structures. Engineering Structures. 2007; 29: 1808–1823.
  • 11. Stratford T.J., Chen J.F. Designing for tapers and defects in FRP-strengthened metallic structures. In: Proc. of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005), 2005.
  • 12. Kowal M. Strengthening of steel construction elements with carbon composite strips (in Polish). Wydawnictwo Politechniki Lubelskiej, Lublin; 2016.
  • 13. Linghoff D., Haghani R., Al-Emrani M. Carbonfibre composites for strengthening steel structures. Thin-Walled Structures. 2009; 47: 1048–1058.
  • 14. Cadei J.M.C., Stratford T.J., Duckett W.G., Hollaway L.C. Strengthening metallic structures using externally bonded fibre-reinforced polymers. Construction Industry Research and Information Association. 2004; C595.
  • 15. Lang T.P., Mallick P.K. Effect of spew geometry on stresses in single lap adhesive joints. International Journal of Adhesion & Adhesives. 1998; 18: 167–17.
  • 16. Kowal M., Łagoda M. Strengthening of steel structures with CFRP strips. Roads and Bridges - Drogi i Mosty. 2017; 16(2): 85–99.
  • 17. Kowal M., Hypki M. Numerical analyses of adhesive-bonded joints in steel I-beams reinforced with CFRP strips. ITMWeb of Conferences. 2017; 15.
  • 18. Belingardi G., Goglio L., Tarditi A. Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joints. International Journal of Adhesion & Adhesives. 2002; 22: 273–282.
  • 19. Haghani R., Al-Emrani M., Kliger R. Interfacial stress analysis of geometrically modified adhesive joints in steel beams strengthened with FRP laminates. Construction and Building Materials. 2009;23:1413–1422.
  • 20. da Silva L.F.M., Lopes M.J.C.Q. Joint strength optimization by the mixed-adhesive technique. International Journal of Adhesion & Adhesives. 2009;29:509–514.
  • 21. Fitton M.D., Broughton J.G. Variable modulus adhesives: an approach to optimised joint performance. International Journal of Adhesion & Adhesives. 2004;25:329–336.
  • 22. da Silva L.F.M., Adams R.D. Techniques to reduce the peel stresses in adhesive joints with composites. International Journal of Adhesion & Adhesives. 2007;27:227–235.
  • 23. da Silva L.F.M., Adams R.D. Joint strength predictions for adhesive joints to be used over a wide temperature range. International Journal of Adhesion & Adhesives. 2007;27:362–379.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cd17d45-3cf0-4998-b6ac-bff50137764a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.