PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study of thermal stability and energy of activation of epoxy composites with particles of synthesised powder mixture for increasing reliability of vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The prospective of the application of new materials on a polymer base is shown in this work. Given that developed composites can be efficiently used for protection of equipment that is operated at elevated temperatures, the impact of the nature and content of powder mixture, synthesised by high voltage electric discharge, on the thermophysical properties of epoxy composites were studied. Epoxy diane oligomer was chosen as the main component of the binder during the formation of the composites. Polyethylene polyamine hardener was used for cross-linking of epoxy composites, which allows hardening of materials at room temperatures. The selection of powder mixture, synthesised by high voltage electric discharge, for increase of thermophysical properties of developed materials was justified. More so, thermal stability and activation energy of epoxy composites were studied. Permissible limits of the temperature, at which developed materials can be used, were established based on the conducted tests of thermophysical properties of materials, filled by powder mixture, synthesised by high voltage electric discharge.
Rocznik
Tom
Strony
73--86
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Transport, Combustion Engines and Ecology, Nadbystrzycka Street 36, 20-618 Lublin, Poland
  • Ternopil Ivan Pul’uj National Technical University, Department of Food Technologies Equipment, Ruska Street 56, 46001 Ternopil, Ukraine
  • Kherson State Maritime Academy, Marine Engineering Faculty, Department of Transport Technologies, Ushakova Avenue 20, Kherson, Ukraine
  • Institute of Pulse Processes and Technologies of NAS of Ukraine, Department of Pulse Processing Dispersed Systems, Bohoyavlenskyi Avenue, 43-A, Mykolaiv, Ukraine
  • Kherson State Maritime Academy, Navigation Faculty, Department of Navigation and Electronic Navigation Systems, Ushakova Avenue 20, Kherson, Ukraine
  • Institute of Pulse Processes and Technologies of NAS of Ukraine, Department of Pulse Processing Dispersed Systems, Bohoyavlenskyi Avenue, 43-A, Mykolaiv, Ukraine
  • Kherson State Maritime Academy, Marine Engineering Faculty, Department of Transport Technologies, Ushakova Avenue 20, Kherson, Ukraine
  • Kherson State Maritime Academy, Marine Engineering Faculty, Department of Transport Technologies, Ushakova Avenue 20, Kherson, Ukraine
  • Institute of Pulse Processes and Technologies of NAS of Ukraine, Department of Pulse Processing Dispersed Systems, Bohoyavlenskyi Avenue, 43-A, Mykolaiv, Ukraine
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Transport, Combustion Engines and Ecology, Nadbystrzycka Street 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Brinkmann O., Schmachtenberg O. 2006. International Plastics Handbook: The Resource for Plastics Engineers. Cincinnati: Hanser. ISBN: 978-1569903995.
  • 2. Broido A. 1969. “Simple sensitive graphical method of treating thermo gravimetric analyze data”. J. Polym. Sci. Part A 7(2): 1761-1773.
  • 3. Brooker R., A. Kinloch, A. Taylor. 2010. “The Morphology and Fracture Properties of Thermoplastic- Toughened Epoxy Polymers”. The Journal of Adhesion 86(7): 726-741. DOI: https://doi.org/10.1080/00218464.2010.482415.
  • 4. Brooker R., A. Kinloch, A. Taylor. 2010. “The morphology and fracture properties of thermoplastic-toughened epoxy polymers” Journal of Adhesion 86: 726-741.
  • 5. Duleba B., F. Greškovič, Ľ. Dulebová, T. Jachowicz. 2015. “Possibility of Increasing the Mechanical Strength of Carbon/Epoxy Composites by Addition of Carbon Nanotubes”. Materials Science Forum 818: 299-302. DOI: https://doi.org/10.4028/www.scientific.net/MSF.818.299.
  • 6. Gawdzińska K., P. Szymański, K. Bryll, P. Pawłowska, M. Pijanowski. 2017. “Flexural strength of hybrid epoxy composites with carbon fiber”. Composites Theory and Practice 17(1): 47-50.
  • 7. Marasanov V., A. Sharko, O. Sharko. 2019. “Energy Spectrum of acoustic Emission Signal in Coupled Continuous Media”. Journal of Nano- and Electronic Physics 11(3): 030281-1-030281-7.
  • 8. Marasanov V., A. Sharko. 2018. “Information-structural modeling of the the Forerunners of Origin of Acoustic Emission Signals in Nanoscale Objects”. IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO). Kyiv. Igor Sikorsky Kyiv. Polytechnic Institute. 24-26.04.2018.
  • 9. Marasanov V., A. Sharko, O. Sharko, D. Stepanchikov. 2019. “Modeling of energy spectrum of acoustic-emission signals in dynamic deformation process of medium with microstructure”. IEEE 39th International Conference on Electronics and nanotechnology (ELNANO). Kyiv. April 16-18. P. 718-723.
  • 10. Marsanov V., A. Sharko. 2017. “Discrete models characteristics of the forerunners of origin of the acoustic emission signals”. IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). Track 4: Nanoelectronics and Photonics, Electron Devices & Embedded Systems.
  • 11. Marasanov V., A. Sharko, D. Stepanchikov. 2019. “Model of the Operator Dynamic Process of Acoustic Emission Occurrence While of Materials Deforming”. Lecture Notes in Computational Intelligence and Decision Making Advances in Intelligent Systems of Computing 1020: 48-64.
  • 12. Matykiewicz D., M. Barczewski, D. Knapski, K. Skórczewska. 2017. “Hybrid effects of basalt fibers and basalt powder on thermomechanical properties of epoxy composites”. Composites Part B: Engineering 125: 157-164.
  • 13. Mossety-Leszczak B., M. Kisiel, P. Szałański, M. Włodarska, U. Szeluga, S. Pusz. 2018. “The influence of a magnetic field on the morphology and thermomechanical properties of a liquid crystalline epoxy carbon composite”. Polymer Composites 39(S4): E2573-E2583.
  • 14. Palraj S., M. Selvaraj, K. Maruthan, G. Rajagopal. 2015. “Corrosion and wear resistance behavior of nano-silica epoxy composite coatings". Progress in Organic Coatings 81: 132-139.
  • 15. Prabhu T., T. Demappa, V. Harish. 2012. “Thermal degradation of HDPE short fibers reinforced epoxy composites”. OSR Journal of Applied Chemistry (IOSRJAC) 1(1): 39-44.
  • 16. Rybak A., K. Gaska, C. Kapusta, F. Toche, V. Salles. 2017. “Epoxy composites with ceramic core – shell fillers for thermal management in electrical devices”. Polymers for Advanced Technologies 28(12): 1676-1682.
  • 17. Salasinska K., M. Barczewski, M. Borucka, R. Górny, P. Kozikowski, M. Celiński, A. Gajek. 2019. “Thermal stability, fire and smoke behaviour of epoxy composites modified with plant waste fillers”. Polymers 11(8): 1234.
  • 18. Salom C., M. Prolongo, A. Toribio, A. Martínez-Martínez, I. Cárcer, S. Prolongo. 2018. “Mechanical properties and adhesive behavior of epoxy-graphene nanocomposites”. International Journal of Adhesion and Adhesives 84: 119-125. DOI: https://doi.org/10.1016/j.ijadhadh.2017.12.004.
  • 19. Shanmugam D., T. Nguyen, J. Wang. 2008. “A study of delamination on graphite/epoxy composites in abrasive waterjet machining”. Composites Part A 39(6): 923-929.
  • 20. Sizonenko O., G. Baglyuk, A. Raichenko, E. Taftai, E. Lipyan, A. Zaichenko, A. Torpakov, E. Gusev. 2012. “Variation in the particle size of Fe-Ti-B4C powders induced by high-voltage electrical discharge”. Powder Metallurgy and Metal Ceramics 51(3/4): 129-136. DOI: 10.1007/s11106-012-9407-4.
  • 21. Sizonenko O., E. Grigoryev, A. Zaichenko, N. Pristash, A. Torpakov, Ye. Lypian, V. Tregub, A. Zholnin, A. Yudin, A. Kovalenko. 2017. “Plasma methods of obtainment of multifunctional composite materials, dispersion-hardened by nanoparticles”. High Temperature Materials and Processes 36(9): 891-896. DOI: 10.1515/htmp-2016-0049.
  • 22. Sizonenko O., N. Oleinik, G. Petasyuk, G. Il’nitskaya, G. Bazalii, V. Shamraeva, É. Taftai, Torpakov A., A. Zaichenko, E. Lipyan. 2013. “Effect of high-voltage electrical discharge treatment of diamond powders on their mechanical characteristics”. Powder Metallurgy and Metal Ceramics 52(7/8): 365-369. DOI: 10.1007/s11106-013-9535-5.
  • 23. Szeluga U., S. Pusz, B. Kumanek, K. Olszowska, A. Kobyliukh, B. Trzebicka. 2019. “Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites-a review”. Critical Reviews in Solid State and Materials Sciences: 1-36.
  • 24. Yu Yi-Hsiuan, M. Chen-Chi, Teng Chih-Chun, Huang Yuan-Li, Tien Hsi-Wen, Lee Shie-Heng, Wang Ikai. 2013. “Enhanced Thermal and Mechanical Properties of Epoxy Composites Filled with Silver Nanowires and Nanoparticles”. Journal of the Taiwan Institute of Chemical Engineers 44(4): 654-659. DOI: https://doi.org/10.1016/j.jtice.2013.01.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ccf3ac8-0e6d-4f5f-a41f-a5844c2505f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.