PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and anatomical distribution study of 67Ga-alginic acid nanoparticles for SPECT purposes in rainbow trout (Oncorhynchus mykiss)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ergosan contains 1% alginic acid extracted from two brown sea weeds. Little is known about the target organs and anatomical distribution of Ergosan (alginic acid) in fi sh. Therefore, feasibility of developing alginic acid nanoparticles to detect target organ in rainbow trout is interesting. To make nanoparticles, Ergosan extract (alginic acid) was irradiated at 30 kGy in a cobalt-60 irradiator and characterized by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Results from TEM images showed that particle sizes of irradiated alginic acid ranged from 30 to 70 nm. The FTIR results indicated that gamma irradiation had no signifi cant infl uence on the basic structure of alginic acid. Later, alginic acid nanoparticles were successively labelled with 67Ga-gallium chloride. The biodistribution of irradiated Ergosan in normal rainbow trout showed highest uptake in intestine and kidney and then in liver and kidney at 4- and 24-h post injection, respectively. Single-photon emission computed tomography (SPECT) images also demonstrated target specifi c binding of the tracer at 4- and 24-h post injection. In conclusion, the feed supplemented with alginic acid nanoparticles enhanced SPECT images of gastrointestinal morphology and immunity system in normal rainbow trout.
Czasopismo
Rocznik
Strony
153--159
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Nuclear Science and Technology Research Institute, Karaj, Iran, Tel.: +9826 3441 1101
autor
  • Department of Fisheries and Environment Science, Faculty of Natural Resources, University of Tehran, Tehran, Iran
  • Department of Fisheries and Environment Science, Faculty of Natural Resources, University of Tehran, Tehran, Iran
autor
  • Nuclear Science and Technology Research Institute, Karaj, Iran, Tel.: +9826 3441 1101
autor
  • Animal Production and Health Laboratory, International Atomic Energy Agency (IAEA), Vienna, Austria
autor
  • Nuclear Science and Technology Research Institute, Karaj, Iran, Tel.: +9826 3441 1101
autor
  • Nuclear Science and Technology Research Institute, Karaj, Iran, Tel.: +9826 3441 1101
autor
  • Nuclear Science and Technology Research Institute, Karaj, Iran, Tel.: +9826 3441 1101
autor
  • Nuclear Science and Technology Research Institute, Karaj, Iran, Tel.: +9826 3441 1101
  • Department of FoodHygiene and Aquatic Animals, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
autor
  • Islamic Azad University, Branch of Kazeroon, Kazeroon, Iran
autor
  • Department of Fisheries and Environment Science, Faculty of Natural Resources, University of Tehran, Tehran, Iran
Bibliografia
  • 1. Krefting, A. (1986). An improved method of treating seaweed to obtain valuable products the form. British Patent No. 11538.
  • 2. Mahmoudi, M., Milani, A. S., Simchi, A., & Stroeve, P. (2009). Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci., 336, 510–518.
  • 3. Goycoolea, F. M., Lollo, G., Remunñá-Lòpez, C., Quaglia, F., & Alonso, M. J. (2009). Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules, 10, 1736–1743.
  • 4. Chen, V. J., & Ma, P. X. (2004). Nano-fi brous poly (L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials, 25(11), 2065–2073.
  • 5. Haji-Saeid, M., Safrany, A., Sampa, M. H., & Ramamoorthy, N. (2010) Radiation processing of natural polymers: The IAEA contribution. Radiat. Phys. Chem., 79, 255–260.
  • 6. Duy, N. N., Phu, D. V., Anh, N. T., & Hien, N. Q. (2011). Synergistic degradation to prepare oligochitosan by gamma-irradiation of chitosan solution in the presence of hydrogen peroxide. Radiat. Phys. Chem., 80, 848–853.
  • 7. Naeem, M., Idrees, M., Aftab, T., Khan, M. M. A., & Varshney, L. (2012). Depolymerised carrageenan enhances physiological activities and menthol production in Mentha arvensis L. Carbohydr. Polym., 87, 1211–1218.
  • 8. Jalali, M. A., Ahmadifar, E., Sudagar, M., & Azari Takami, G. (2009). Growth effi ciency, body composition, survival and haematological changes in great sturgeon (Huso huso Linnaeus, 1758) juveniles fed diets supplemented with different levels of Ergosan. Aquac. Res., 40(7), 804–809.
  • 9. Heidarieh, M., Mirvaghefi , A. R., Akbari, M., Farahmand, H., Sheikhzadeh, N., Shahbazfar, A. A., & Behgar, M. (2012). Effect of dietary Ergosan on growth performance, digestive enzymes, intestinal histology, hematological parameters and body composition of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem., 38, 1169–1174.
  • 10. Barrefelt, Å. A., Brismar, T. B., Egri, G., Aspelin, P., Olsson, A., Oddo, L., Margheritelli, S., Caidahl, K., Paradossi, G., Dähne, L., Axelsson, R., & Hassan, M. (2013). Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99mTc-labeled magnetic microbubbles. EJNMMI Res., 3, 12.
  • 11. Jalilian, A. R., Yousefnia, H., Shafaii, K., Novinrouz, A., & Rajamand, A. A. (2012). Preparation and biodistribution studies of a radiogallium-acetylacetonate bis (thiosemicarbazone) complex in tumor-bearingrodents. Iran. J. Pharm. Res., 11(2), 523–531.
  • 12. Peddie, S., Zou, J., & Secombes, C. J. (2002). Immunostimulation in the rainbow trout (Oncorhynchus mykiss) following intraperitoneal administration of Ergosan. Vet. Immunol. Immunop., 86, 101–113.
  • 13. Heidarieh, M., Borzouei, A., Rajabifar, S., Ziaie, F., & Shafi ei, Sh. (2012). Effects of gamma irradiation on antioxidant activity of Ergosan. Iran. J. Radiat. Res., 9, 245–249.
  • 14. Heidarieh, M., Daryalal, F., Mirvaghefi, A. R., Shahbazfar, A. A., Moodi, S., & Heidarieh, H. (2014). Histopathological alterations in rainbow trout, Oncorhynchus mykiss (Walbaum, 1792), induced by irradiated alginic acid. J. Appl. Ichthyol., 30, 543–545.
  • 15. Orlando, P., Binaglia, L., De Feo, A., Trevisi, R., Melodia, C., & Trenta, R. (1994). Preparation of high molecular weight radioiodmated alginic acid. J. Label. Compd. Radiopharm., 34(7), 653–657.
  • 16. Sanchez, A., Toby´o, M., Gonza´lez, L., Fabra, A., & Alonso, M. J. (2003). Biodegradable micro- and nanoparticles as long-term delivery vehicles for interferon-alpha. Eur. J. Pharm. Sci., 18, 221–229.
  • 17. Karim, M. R., Lim, K. T., Lee, C. J., Islam Bhuiyan, M. T., Kim, H. J., Park, L. S., & Lee, M. S. (2007). Synthesis of core-shell silver–polyaniline nanocomposites by gamma radiolysis method. J. Colloid Interface Sci., 45, 5741–5747.
  • 18. Daemi, H., & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Transactions F: Nanotechnology, 19(6), 2023–2028.
  • 19. Grabowska, B., & Holtzer, M. (2009). Structural examination of the cross-linking reaction mechanism of polyarylate binding agents. Arch. Metall. Mater., 54, 427–437.
  • 20. Moosavi-Nasab, M., Taherian, A. R., Bakhtiyari, M., Farahnaky, A., & Askari, H. (2012). Structural and rheological properties of succinoglycan biogums made from low-quality date syrup or sucrose using agrobacterium radiobacter inoculation. Food Bioprocess Technol., 5, 638–647.
  • 21. Heidarieh, M., Soltani, M., Tamimi, A. H., & Toluei, M. H. (2011). Comparative effect of raw fiber (Vitacel) and alginic acid (Ergosan) on growth performance, immunocompetent cell population and plasma lysozyme content of giant sturgeon (Huso huso). Turk. J. Fish. Aquat. Sci., 11, 445–450.
  • 22. Merrifield, D. L., Harper, G. M., Mustafa, S., Carnevali,O., Picchietti, S., & Davies, S. J. (2011). Effect of dietary alginic acid on juvenile tilapia (Oreochromis niloticus) intestinal microbial balance, intestinal histology and growth performance. Cell Tissue Res., 344, 135–146.
  • 23. Press, C. Mc. L., Evensen, Ø., Reitan, L. J., & Landsverk, T. (1996). Retention of furunculosis vaccine components in Atlantic salmon (Salmon solar L.), following different routes of vaccine administration. J. Fish Dis., 19(3), 215–224.
  • 24. Joosten, P. H. M., Kruijer, W. J., & Rombout, J. H. W. M. (1996). Anal immunisation of carp and rainbow trout with different fractions of a Vibrio anguillarum bacterin. Fish Shellfi sh Immunol., 6, 541–551.
  • 25. Faghani, T., Kousha, A., Azari Takami, Gh., & Faghani, S. (2008). Study on growth performance, survival rate, hematological parameters in rainbow trout (Oncorhynchus mykiss) in Mazandaran Province of Iran. J. Fish. Aquat. Sci., 3, 398–403.
  • 26. Montero-Rocha, A., McIntosh, D., Sanchez-Merino, R., & Flores, I. (2006). Immunostimulation of white shrimp (Litopenaeus vannamei) following dietary administration of Ergosan. J. Invertebr. Pathol., 91, 188–194.
  • 27. Gioacchini, G., Smith, P., & Carnevali, O. (2008). Effects of Ergosan on the expression of cytokine genes in the liver of juvenile rainbow trout (Oncorhynchus mykiss) exposed to enteric red mouth vaccine. Vet. Immunol. Immunopathol., 123, 215–222.
  • 28. Caipang, C. M., Lazado, C. C., Berg, I., Brinchmann, M. F., & Kiron, V. (2011). Infl uence of alginic acid and fucoidan on the immune responses of head kidney leukocytes in cod. Fish Physiol. Biochem., 37(3), 603–612.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ccc3eae-7a70-491f-ba52-0e09b07f4622
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.