PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forecasting the impact of buildings with multi-storey underground parts on the displacement of subsoil using modern numerical tools

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper will analyse and review the experience to date in determining the impact range of implementation of deeply founded structures on the displacement of the subsoil in the vicinity. With the background of these experiences, primarily empirical, the present possibilities of using numerical modelling to forecast the displacements of the terrain surface in various stages of works, that is, execution of deep excavation support systems, excavation-deepening phases with successive adding of struts, construction of underground levels and erection of the above-ground part of the building, will be presented. Based on the results of own research, conclusions on the use of 3D numerical models in spatial shaping and designing the structure of underground parts of new buildings erected in dense urban development will be presented. The characterised 3D numerical models were verified, taking into account the actual results of geodetic measurements of the completed buildings. Determining the range and forecasting the displacements of the subsoil are necessary for the design and implementation of investments due to the need to ensure the safety of erection and use of a new building and the buildings located within the area of influence.
Wydawca
Rocznik
Strony
479--491
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Architecture, Poland
  • Warsaw University of Technology, Faculty of Architecture, Poland
Bibliografia
  • [1] Clough, G.W., O’Rourke, T.D. (1998). Construction induced movements of in-situ walls. Proceedings of Conference Design and Performance of Earth Retaining Structures, New York.
  • [2] Symons, I.F., Carder, D.R. (1992). Field measurements on embedded retaining walls. Geotechnique, 30(1), 117–126.
  • [3] Breymann, H., Freiseder, M., Schweiger, H. F. (1997). Deep excavations in soft ground, in-situ measurements and numerical predictions. XIV International Conference of Soil Mechanics and Foundations Engineering. Hamburg.
  • [4] Simpson, B., Calabresi, G., Sommer, H., Wallays, M. (1979) Design parameters for stiff clays. VII ECSMFE, Brighton.
  • [5] Smoltczyk, U. (Eds.) (2002, 2003). Geotechnical Engineering Handbook. Vol. 1 – Fundamentals (2002); Vol. 2 – Procedures (2003); Vol. 3 – Elements and Structures (2003). Ernst & Sohn, A Wiley Company.
  • [6] Michalak, H, Pęski, S, Pyrak, S, Szulborski, K. (1998). On the impact of deep excavations on neighbouring buildings. Inżynieria i Budownictwo, 1/1998, 12–15.
  • [7] Wysokiński, L, Kotlicki, W. (2002). Protection of buildings adjacent to deep excavations. Recommendation 376. Building Research Institute Warsaw.
  • [8] Michalak, H. (2006). Structural and spatial development of underground garages in highly urbanized areas. Architecture series – issue 2, (pp. 25–51). Publishing House of Warsaw University of Technology.
  • [9] Michalak, H. (2009). Selected problems of designing and constructing underground garages in intensively urbanized areas. In C. Madryas, B. Przybyła & A. Szot (Eds.), Underground Infrastructure of Urban Areas (pp. 193–201). CRC Press / Balkema, Taylor & Francis Group, A Balkema Book.
  • [10] Obrzud, R, Podleś, K. (2016). Examples of large–scale simulations of soil–structure interaction with ZSoil. Rossolis Editions & Zace Services Ltd.
  • [11] Michalak, H., Przybysz, P. (2021) Subsoil movements forecasting using 3d numerical modeling. Archives of Civil Engineering, 67(1), 367–385, https://doi.org/10.24425/ace.2021.136478.
  • [12] Burland, J.B., Simpson, B., St. John, H.D. (1979). Movements around excavations in London Clay. 7th European Conference on Soil Mechanics and Foundation Engineering, London.
  • [13] Kłosiński, B. (2002). Projektowanie obudów głębokich wykopów. Głębokie wykopy na terenach wielkomiejskich. IDiM PW & IBDiM, Warsaw.
  • [14] Siemińska-Lewandowska, A. (2010). Głębokie wykopy projektowanie i wykonawstwo. Wydawnictwa Komunikacji i Łączności WKŁ.
  • [15] Staszewska K., Cudny, M. (2020). Modelling the time-dependent behaviour of soft soils. Studia Geotechnica et Mechanica, 42(2), 97–110, https://doi.org/10.2478/sgem-2019-0034.
  • [16] Bałachowski, L. (2014). Deep compaction control of sandy soils. Studia Geotechnica et Mechanica, 36(2), 2014, https://doi.org/10.2478/sgem-2014-0014.
  • [17] Górska, K., Wyjadłowski, M. (2012). Analysis of displacement of excavation based on inclinometer measurements. Studia Geotechnica et Mechanica, 34(4), https://doi.org/10.5277/sgm041201.
  • [18] Kowalska M. (2012). Influence of loading history and boundary conditions on parameters of soil constitutive models. Studia Geotechnica et Mechanica, 34(1), https://doi.org/10.1515/sgem-2017-0020.
  • [19] Truty A. (2018). On consistent nonlinear analysis of soil–structure interaction problems. Studia Geotechnica et Mechanica, 40(2), 86–95, https://doi.org/10.2478/sgem-2018-0019.
  • [20] Bobylev, N. (2015). Underground space as an urban indicator: Measuring use of subsurface. Tunnlling and Underground Space Technology, 55, 40–51, https://doi.org/10.1016/j.tust.2015.10.024.
  • [21] Jiang, S., Wang, Y. (2019). Long-Term Ground Settlements over Mined-Out Region Induced by Railway Construction and Operation. Sustainability, 11(3), 875, https://doi.org/10.3390/su11030875.
  • [22] Agnella, D., Giannotti, W.J., Rosatti Filho, M.A.. Oliveira Pires, T. (2018). PAT TBM improving - A case study to Metro Sao Paulo. In A. Negro, M.O. Jr. Cecílio, (Eds.) Geotechnical Aspects of Underground Construction in Soft Ground, Proceedings of the 9th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Sao Paulo, Brazil, 4–6 April 2017. Taylor & Francis Group, London.
  • [23] Ramadan, E.H., Ramadan, M., Khashila, M.M., Kenawi, M.A. (2013). Analysis of Piles Supporting Excavation Adjacent to Existing Buildings. 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6 September 2013; pp. 2835–2838. Available online: https://www.researchgate.net/publication/272507779 (accessed on 2 December 2020).
  • [24] Lei, G.H., Sun, H.S., Ng, C.W.W. (2014). An approximate analytical solution for calculating ground surface settlements due to diaphragm walling. Computers and Geotechnics, 61, 108–115, https://doi.org/10.1016/j.compgeo.2014.05.002.
  • [25] Hu, B., Wang, C. (2019). Ground surface settlement analysis of shield tunneling under spatial variability of multiple geotechnical parameters. Heliyon, 5, e02495, https://doi.org/10.1016/j.heliyon.2019.e02495.
  • [26] Lu, H., Shi, J., Wang, Y., Wang, R. (2019). Centrifuge modeling of tunneling-induced ground surface settlement in sand. Underground Space, 4(4), 302–309, https://doi.org/10.1016/j.undsp.2019.03.007.
  • [27] Korff, M., Mair, R.J. (2013). Ground displacements related to deep excavation in Amsterdam. 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6 September 2013; pp. 2779–2782. Available online: http://www.cfms-sols.org/sites/default/files/Actes/2779-2782.pdf (accessed on 26 February 2021).
  • [28] Korff, M. (2018) Case Studies and Monitoring of Deep Excavations. In A. Negro, M.O. Jr. Cecílio, (Eds.) Geotechnical Aspects of Underground Construction in Soft Ground, Proceedings of the 9th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Sao Paulo, Brazil, 4–6 April 2017. Taylor & Francis Group, London. Available online: http://resolver.tudelft.nl/uuid:fe0af6c8-5588-4a06-8e8b-1c75af49ef28 (accessed on 2 December 2020).
  • [29] Masuda, T. (1996). A study of empirical correlation for lateral deflections of diaphragm walls in deep excavations. International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Balkema, Rotterdam, 1996, 19–21 July; pp. 167–172; Available online: https://www.issmge.org/uploads/publications/6/8/1996_024.pdf (accessed on 2 December 2020).
  • [30] Domurad, J., Kościuch, P., Domurad, J., Karwan, R. (2016). Projekt konstrukcyjny ścian szczelinowych, tymczasowego rozparcia i pali Solec – Ludna – Wilanowska, Warsaw, Poland.
  • [31] Korczak, P. (2016–2018). Dokumentacja pomiarów geodezyjnych Solec/Ludna/Wilanowska. Pomiary przemieszczeń, Warsaw, Poland.
  • [32] Kuryłowicz, S., Kuryłowicz, E., Gientka, T., Krześniak, M., Miklaszewska, K., Pianko, M., Tęskny, M., Kuczyński, P. (2010–2017). Projekt architektoniczny zabudowy mieszkaniowej z garażem podziemnymi i usługami ul. Solec/Ludna/Wilanowska, Warsaw, Poland.
  • [33] Szulborski, K., Majewska, A., Michalak, H., Paziewski, T., Pęski, S., Przybysz, P. Pyrak, S. (2010). Ekspertyzy techniczne sąsiedniej zabudowy i ocena wpływu realizacji zespołu mieszkaniowego SBM TORWAR przy ul. Solec/Ludna/Wilanowska w Warszawie, Warsaw, Poland.
  • [34] Wolski, W. with the team (2009) Dokumentacja geologicznoinżynierska ustalająca geotechniczne warunki posadowienia dla potrzeb projektu inwestycji zlokalizowanej w rejonie ul. Ludnej i ul. Solec w Warszawie, Warsaw, Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cc93215-904e-4a85-a9d4-47a50c31f9de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.