PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The possibilities of using sulphate-reducing bacteria for phenol degradation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Steel production processes generate the coke wastewaters contaminated predominantly by highly toxic phenol. Numbers of physical, chemical and physicochemical methods have been developed for the removal of phenol from coke wastewaters. Biological methods are eco-friendly and present appropriate alternative of conventional processes. Various microorganisms are able to degrade phenolic compounds including sulphate-reducing bacteria (SRB). In this work, we study the adaptation of SRB isolated from natural source to phenol and consequently the application of the adapted bacterial cultures for the biodegradation of phenol from model solutions. Two types of bacterial culture were used (monoculture containing SRB genera Desulfovibrio and mixed bacterial consortium containing SRB genera Desulfovibrio). In experiments the modified Postgate’s medium C was used - sodium lactate as the original energy and carbon source was replaced by phenol with concentration 10 mg/dm3 for adaptation and 50 mg/dm3 for biodegradation. The mixed bacterial consortium has been shown as more capable to be adapted and grow on phenol and it has the better potential for phenol biodegradation as the bacterial monoculture of SRB genera Desulfovibrio.
Rocznik
Strony
1148--1155
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Mineral Biotechnology, Institute of Geotechnics of Slovak Academy of Sciences, Watsonova 45, 040 01 Kosice, Slovak Republic
  • Department of Mineral Biotechnology, Institute of Geotechnics of Slovak Academy of Sciences, Watsonova 45, 040 01 Kosice, Slovak Republic
  • Department of Mineral Biotechnology, Institute of Geotechnics of Slovak Academy of Sciences, Watsonova 45, 040 01 Kosice, Slovak Republic
Bibliografia
  • AHAMAD, A. M., 1995. Phenol degradation by Pseudomonas aeruginosa. Environ. Sci. Health 30, 99-103.
  • BAK, F., WIDDEL, F., 1986. Anaerobic degradation of phenol and phenol derivates by Desulfobacterium phenolicum sp. nov. Archives of Microbiology 146(2), 177-180.
  • BASHA, K.M., RAJENDRAN, A., THANGAVELU, V., 2010. Recent advances in the Biodegradation of Phenol: A review. Asian J. Exp. Biol. Sci. 1(2), 219-234.
  • BERGEY, D. H., HOLT, J.G., 2000. Bergey’s manual of determinative bacteriology. 9th edition. Lippincott Williams & Wilkins.
  • BOOPATHY, R., 1995. Isolation and characterization of a phenol-degrading, sulphate-reducing bacteria from swine manure. Biores. Technol. 54, 29-33.
  • BOOPATHY, R., 1997. Anaerobic Phenol Degradation by Microorganisms of Swine Manure. Current Microbiol. 35(1), 64-67.
  • COLLINS, G., FOY, C., McCHUGH, S., MAHONY, T., O’FLAHERTY, T., 2005. Anaerobic biological treatment of phenolic wastewater at 15-18 °C. Water Res. 39, 1614-1620.
  • FANG, H.H.P., LIANG, D.W., ZHANG, T., LIU, Y., 2006. Anaerobic treatment of phenol in wastewater under thermophilic condition. Water Res. 40, 427-434.
  • FANG, H.H.P., LIU, Y., KE, S.Z., ZHANG, T., 2004. Anaerobic degradation of phenol in wastewater at ambient temperature. Water Sci. Technol. 49, 95-102.
  • GAO, L., Li, S., WANG, Y., GUI, X., XU, H., 2016. Pretreatment of coking wastewater by an adsorption process using fine coking coal. Physicochem. Probl. Miner. Process 52(1), 422-436.
  • GARCIA-CRUZ, U., CELIS, L.B., POGGI, H., MERAZ, M. 2010. Inhibitory concentration of 2, 4D and its possible intermediates in sulfate reducing biofilm. J. Hazard. Mater. 179(1), 591-595.
  • GROSSI, V., CRAVO-LAUREAU, C., RONTANI, J.F., CROS, M., HIRSCHLER-RÉA. A., 2011. Anaerobic oxidation of n-alkenes by sulphate-reducing bacteria from the genus Desulfatiferula: n.Ketones as potential metabolites. Research in Microbiology 162, 915-922.
  • GUO, X.J., LU, Z.Y., WANG, P., LI, H., HUANG, Z.Z., LIN, K.F., LIU, Y.D., 2015. Diversity and degradation mechanism of an anaerobic bacterial community treating phenolic wastewater with sulfate as an electron acceptor. Environ. Sci.Pollut. Res. 22, 16121-16132.
  • JANOSZ-RAJCZYK, M., WIŚNIOWSKA, E., PLOSZAJ, J., WRÓZ, S., 2014. Simultaneous removal of PAHs and phenol from coking wastewater under anaerobic conditions. Desalin. Water Treat. 52, 4006-4013.
  • KUCEROVA, R., FECKO, P., 2006 Biodegradation of PAU, PCB, and NEL soil samples from the hazardous waste dump in Pozd´átky (Czech Republic). Physicochem. Problems Miner. Proc. 40(1), 203-210.
  • KWIECIŃSKA, A., FIGA, J., STELMACH, S., 2016. The Use of Phenolic Wastewater in Coke Production. Pol. J. Environ. Stud. 25(2), 465-470.
  • LUPTAKOVA, A., KUSNIEROVA, M, FECKO P., 2002. Mineralne biotechnologie II. Mineral technologies. Wyd. VŠB TU Ostrava.
  • LUPTAKOVA, A., MACINGOVA, E., HARBULAKOVA, V., 2009. Positive and negative aspects of sulphate-reducing bacteria in environment and industry. Nova Biotechnologica 9(2), 147-154.
  • LUPTAKOVA, A., UBALDINI, S., FORNARI, P., MACINGOVA, E., 2012. Physical-chemical and biological-chemical methods for treatment of acid mine drainage. Chem. Eng. Trans. 28, 115-120.
  • MACINGOVA, E., LUPTAKOVA, A., 2010. Removal of sulphates from mining waters using the sulphate-reducing bacteria. Mineralia Slovaca 42, 333-336.
  • MARROT, B., BARRIOS–MARTINEZ, A., MOULIN, P., ROCHE, N., 2006. Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor. Biochem. Eng. J. 30, 174-183.
  • MOHANTY, M.P., BRAHMACHARIMAYUM, B., GHOSH, P.K., 2018. Effects of phenol on sulfate reduction by mixed microbial culture: kinetics and bio-kinetics analysis. Water Sci. Technol. 77, 1079-1088.
  • MORT, S.L., DEAN-ROSS, D., 1994. Biodegradation of Phenolic Compounds by Sulfate-Reducing Bacteria from Contaminated Sediments. Microbial Ecol. 28, 67-77.
  • MUYZER, G., STAMS, A.J.M., 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nature Rev. 6, 441-454.
  • PILLAI, I.M.S., GUPTA, A.K., 2016. Anoxic oxidation of coke oven wastewater: Multiparameter optimalization for simultaneous removal of cyanide, COD and phenol. J. Envir. Manage. 176, 45-53.
  • PISHGAR, R., NAJAFPOUR, G., NEYA, B.N., MOUSAVI, N., BAKHSHI, Z., 2011. Anaerobic biodegradation of phenol: Comparative study of free and immobilized growth. Iranica J. Energy Envir. 2(4), 348-355.
  • POSTGATE, J.R., 1984. The sulphate-reducing bacteria. Wyd. Cambridge University Press, Cambridge.
  • RUDZANOVA, D., LUPTAKOVA, A., MACINGOVA, E., 2018. Biodegradation of Phenol Under Low Concentration from Model Solutions by Sulphate-reducing Bacteria. Biotechnology & Metals 2018: e-Proceedings of the 5th International Scientific Conference, Kosice, Slovakia, 66-70. ISBN 978-80-89883-07-3.
  • SENTHILVELAN, T., KNAGARAJ, J., PANDA, R.C., MANDAL, A.B., 2014. Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean Tech. Environ. Policy 16, 113-126.
  • SI, L., RUIXUE, K., LIN, S., SIFAN, L., SHUANGCHUN, Y., 2013. Study of treatment methods of phenol in industrial wastewater. Int. J. Sci. Eng. Res. 4(5), 230-232.
  • SRIDEVI, V., CHANDANA LAKSHIMI, M.V.V., MANASA, M., SRAVANI, M., 2012. Metabolic pathways for the biodegradation of phenol. Int. J. Eng. Sci. Adv. Technol. 2, 695-705.
  • TSAI, J.CH., KUMAR, M., CHANG, S.U., LIN, J.G., 2009. Determination of optimal phenanthrene, sulfate and biomass concentration for anaerobic biodegradation of phenanthrene by sulfate-reducing bacteria and elucidation of methabolic pathway. J. Hazard. Mater. 171, 1112-1119.
  • VÁZQUEZ, I., RODRÍGUEZ, J., MARANÓN, E., L. CASTRILLÓN, L., FERNÁNDEZ, Y., 2006. Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation. J. Hazard. Mater. B137, 1773-1780.
  • VEERESH, G. S., KUMAR, P., MEHROTRA, I., 2005. Treatment of phenol and cresols in upflow anaerobic sludge blanket UASB process: a review. Water Res. 39, 154-170.
  • WOLICKA, D., BORKOWSKI, A., 2007. The Geomicrobiological Role of sulphate-Reducing Bacteria in Environments Contaminated by Petroleum Products. Geomicrobiol. J. 24, 599-607
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cc3f472-2e17-4b28-90dc-0c47753ba2d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.