PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pupils’ preconceptions about heat, temperature and energy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article is focused on finding out pupils’ preconceptions about heat, temperature and energy. As a research tool we used a didactic test with individual types of tasks about the concepts. A total of 122 respondents aged 12 to 14 participated in the research. The research sample consisted of two groups of pupils. One group consisted of pupils attending a school assigned for talented pupils, for simplicity they are referred as talented pupils. The second group consisted of pupils who do not attend this type of school, we marked them as “general population”. The number of respondents in the sample of talented pupils was 54. The number of respondents in the sample “general population” was 68 pupils. In the research we compared ideas about concepts heat, temperature and energy of talented pupils and pupils of the “general population”. We also compared talented pupils and pupils of the “general population” in solving of conceptual and algorithmic tasks in didactic test. We found out pupils of the age from 12 to 14 have misconceptions about the concepts. We also identified the misconceptions and the most common are also mentioned in this article.
Rocznik
Strony
79--91
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Department of Didactics in Science, Psychology and Pedagogy, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic, phone +4212602 96451
  • Department of Didactics in Science, Psychology and Pedagogy, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic, phone +4212602 96451
Bibliografia
  • [1] Neumann K, Viering T, Boone WJ, Fischer HE. Towards a learning progression of energy. J Res Sci Teach. 2013;50(2):162-88. DOI: 10.1002/tea.21061.
  • [2] Baran M, Sozbilir M. An application of context-and problem-based learning (C-PBL) into teaching thermodynamics. Res Sci Educ. 2018;48(4):663-89. DOI: 10.1007/s11165-016-9583-1.
  • [3] Holman J, Pilling G. Thermodynamics in context: A case study of contextualized teaching for undergraduates. J Chem Educ. 2004;81(3):373. DOI: 10.1021/ed081p373.
  • [4] Castier M, Amer MM. XSEOS: An evolving tool for teaching chemical engineering thermodynamics. Educ Chem Eng. 2011;6(2):e62-70. DOI: 10.1016/j.ece.2010.12.002.
  • [5] Barker V. Beyond Appearances: Students’ Misconceptions about Basic Chemical Ideas. A report prepared for the Royal Society of Chemistry; 2000. DOI: 10.1.1.649.3454.
  • [6] Lewis EL, Linn MC. Heat energy and temperature concepts of adolescents, adults, and experts: Implications for curricular improvements. J Res Sci Teach. 1994;31(6):657-77. DOI: 10.1002/tea.3660310607.
  • [7] Erickson G, Tiberghien A. Heat and Temperature. Children’s Ideas in Science. Philadelphia: Open University Press; 1985. ISBN: 0335150403.
  • [8] Kircher E, Schneider W, editors. Physics Didactics in Practice. Berlin: Springer-Verlag; 2013. ISBN: 3540419373.
  • [9] Barke HD, Hazari A, Yitbarek S. Misconceptions in chemistry: Addressing perceptions in chemical education. Berlin: Springer-Verlag; 2009. ISBN: 978354070988-6.
  • [10] Suchocki JA. Conceptual Chemistry. 5th ed. London: Pearson Education; 2014. ISBN: 9780321804419.
  • [11] Enggarani B, Ibnu S, Santoso A. Elicit-Predict-Confront-Observe-Explain-Reinforce (EPCOER) learning on thermochemistry to reduce alternative concept among students with different initial knowledge. JPS. 2019;7(3). DOI: 10.17977/jps.v7i3.12520.
  • [12] Chen F, Zhang S, Guo Y, Xin T. Applying the rule space model to develop a learning progression for thermochemistry. Res Sci Educ. 2016; 47(6):1357-78. DOI: 10.1007/s11165-016-9553-7.
  • [13] Montero E, Alaoui FEM, González-Fernández MJ, Aguilar F. Teaching thermodynamics to electronic engineers through active teaching strategies. EDUCON. IEE. 2012. DOI: 10.1109/EDUCON.2012.6201071.
  • [14] Etiubon RU, Ugwu AN. Problem-based learning and students’ academic achievement on thermodynamics: A case study of University of Uyo. IOSR-JRME. 2016;6(5):36-41.
  • [15] Ceylan T. Challenges of engineering thermodynamics education. Proc 2012 ASEE Annual Conf. 2012. Available from: http://ilin.asee.org/Conference2012/Papers/Ceylan.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cc35513-3155-4ad3-beb1-39468e8fa998
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.