Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we consider Willett’s and Rozanova’s generalizations of Opial’s inequality and extend them to inequalities in several independent variables. Also, we present some new Opial-type inequalities in several independent variables.
Wydawca
Czasopismo
Rocznik
Tom
Strony
839--847
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Matice Hrvatske 15, 21000 Split, Croatia
autor
- Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Matice Hrvatske 15, 21000 Split, Croatia
autor
- Faculty of Textile Technology, University of Zagreb, Prilaz Baruna Filipovica 28a, 10000 Zagreb, Croatia
autor
- Abdus Salam School of Mathematical Sciences, 68-B, New Muslim Town, Lahore 54000, Pakistan
Bibliografia
- [1] R. P. Agarwal, P. Y. H. Pang, Opial Inequalities with Applications in Differential and Difference Equations, Kluwer Academic Publishers, Dordrecht, Boston, London, 1995.
- [2] M. Andric, A. Barbir, J. Pecaric, On Willett’s, Godunova–Levin’s and Rozanova’s Opial type inequalities with related Stolarsky type means, Math. Notes, (2014), to appear.
- [3] I. Brnetic, J. Pecaric, Note on generalization of Godunova–Levin–Opial inequality, Demonstratio Math. 3(30) (1997), 545–549.
- [4] I. Brnetic, J. Pecaric, Note on the generalization of the Godunova–Levin–Opial type inequality in several independent variables, J. Math. Anal. Appl. 215 (1997), 274–283.
- [5] D. S. Mitrinovic, J. Pecaric, A. M. Fink, Inequalities Involving Functions and their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1991.
- [6] Z. Opial, Sur une inégalité, Ann. Polon. Math. 8 (1960), 29–32.
- [7] J. E. Pecaric, F. Proschan, Y. C. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Inc., 1992.
- [8] G. I. Rozanova, Integral inequalities with derivatives and with arbitrary convex functions, Uc. Zap. Mosk. Gos. Ped. In-ta im. Lenina 460 (1972), 58–65.
- [9] D. Willett, The existence–uniqueness theorem for an n-th order linear ordinary differential equation, Amer. Math. Monthly 75 (1968), 174–178.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cbad0e7-89f3-40a3-993b-3b0ce9416807