Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents research on the influence of an electric arc on the properties and structure of a traction section guide made of ETP (Electrolytic Tough Pitch) copper in a segment insulator of a railway section. An electrical discharge occurring during use, which may accompany the passage of the pantograph current collector between adjacent guides, may cause many physical phenomena. In addition to existing guide wear mechanisms, such as friction, corrosion, and/or oxidation, the action of an electric arc also has a devastating effect on the guide in use, causing its complete destruction in extreme cases. The aim of the investigation was to determine what type of damage to the sectional guide in real operation conditions was caused by the impact of an electric arc that is induced when the pantograph passes from one guide to the adjacent one. The paper presents the results of tests on an operational guide made of hard electrolytic copper Cu-ETP, in particular the results of microscopic observations, the results of microscopic tests obtained using the ZEISS SUPRA 25 scanning electron microscope, as well as the analysis of the chemical composition in micro-areas (EDS - Energy-dispersive X- ray spectroscopy). On the basis of the tests carried out, it was found that the dominant destructive mechanism of the guide is the electric arc, the presence of elements from the external environment was also determined, and the degree of damage was analysed depending on the conditions and operating times.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
214--225
Opis fizyczny
Bibliogr. 37 poz., fig., tab.
Twórcy
autor
- Department of Railway Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology
autor
- Department of Railway Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology
Bibliografia
- 1. Konieczny, J., Labisz, K., Adamiec, A., Młyńczak, J., Adamiak, A., Wear mechanisms of the section isolator guide. Ed. by Maciej Szkoda. Challenges for the market of production, operation and maintenance of rail vehicles. Monography. Kraków: Wydawnictwo Politechniki Krakowskiej. 2021; 236–24.
- 2. Wymagania dla materiałów węglowych nakładek ślizgowych pantografów dopuszczonych do współpracy z siecią trakcyjną zarządzaną przez PKP Polskie Linie Kolejowe S.A. Iet-4. [In Polish: Requirements for carbon materials of pantograph slide pads approved for cooperation with the overhead contact line managed by PKP Polskie Linie Kolejowe S.A. Iet-4]. Available at: https://www.bip.plksa.pl/files/public/user_upload/pdf/Akty_prawne_i_przepisy/Instrukcje/Wydruk/Iet/let-4_WCAG.pdf (attendance 2024.01.07)
- 3. Lee, S.-H., Hsu, H.-C., Tuan, W.-H., Oxidation Behavior of Copper at a Temperature below 300 °C and the Methodology for Passivation. Materials Research. 2016; 19(1): 51–56.
- 4. Mańka, A., Hełka, A., Ćwiek, J. Influence of Pantograph Carbon–Metal Composite Slider Thermal Properties on the Railroad Wire Temperature. Energies. 2021; 14: 7940.
- 5. Wu, G., Wu, J., Wei, W., Zhou, Y., Yang, Z., Gao, G. Characteristics of the Sliding Electric Contact of Pantograph/Contact Wire Systems in Electric Railways. Energies. 2018; 11: 17.
- 6. Konieczny, J. Destruction mechanisms of Cu-ETP copper guides for sectional insulators of railway traction. Scientific Journal of the Silesian University of Technology. Series Transport. 2021; 113: 101-113.
- 7. Kano, R., Nemoto, Y., Maeda, Y., Yamamoto, S., Iwao, T. Arc temperature measurement with microsecond spectroscopic measurement. Electrical Engineering in Japan. 2019; 139(10): 629–635.
- 8. Csanyi, E. Consequences of internal arc for personal safety and MV electric equipment. Electrical Engineering Portal. 2011. Available at: https://electrical-engineering-portal.com/consequences-of-internal-arc-for-personal-safety-and-mv-electrical-equipment (attendance 2024.01.07)
- 9. Armijo, K.M., Clem, P.G., Kotovsky, D., Demosthenous, B., Tanbakuchi, A., Martinez, R.J., Muna, A.B., LaFleur, C.B. Electrical Arc Fault Particle Size. Characterization. Sandia National Laboratories, United States Department of Energy by National Technology & Engineering Solutions of Sandia, LLC. 2019.
- 10. Das, J.C. Arc Flash Hazard Analysis and Mitigation. John Wiley & Sons. 2012; Edition 1.
- 11. BN-769317-109. Sieć trakcyjna kolejowa. Izolatory sekcyjne. Warszawa: Centralny Ośrodek Badań i Rozwoju Techniki Kolejnictwa/Instytut Kolejnictwa. [In Polish: BN-769317-109. Railway traction network. Section insulators. Warsaw: Central Research and Development Center of Railway Technology/Railway Research Institute].
- 12. PN-EN 1976:2013-04. Miedź i stopy miedzi. Wyroby odlewane z miedzi nieprzerobione plastycznie. Warszawa: Polski Komitet Normalizacyjny. [In Polish: PN-EN 1976:2013- 04. Copper and copper alloys. Copper-cast products not wrought. Warsaw: Polish Committee of Standardization].
- 13. PN-EN 1652:1999. Miedź i stopy miedzi. Płyty, blachy, taśmy i krążki ogólnego przeznaczenia. Warszawa: Polski Komitet Normalizacyjny. [In Polish: PN-EN 1652:1999. Copper and copper alloys. General-purpose plates, sheets, strips and pulleys. Warsaw: Polish Committee of Standardization].
- 14. Wu, G., Gao, G., Wei, W., Yang, Z. The Electrical Contact of the Pantograph-Catenary System Theory and application. Springer Nature Singapore Pte Ltd. 2019.
- 15. Hu, D.-Ch., Wang, L., Sun, L-M., Effects of arc discharge on wear properties of carbon-carbon composites sliding against Cu trolley under electric current. Materials Science Forum. 2011; 675–677: 407–410.
- 16. Jüttner, B. Cathode spot of electric arc. Journal of Physics D: Applied Physics. 2001; 34: 103–123.
- 17. Anders, A. Cathodic Arcs: From Fractal Spots to Energetic Condensation. Springer New York, NY. 2008
- 18. Langley, R.A. Data compendium for plasma-surface interactions. Nuclear Fusion. New York. 1984; 24: 001.
- 19. Daadler, J.E. Cathode spots and vacuum arcs. Physica B+C. 1981; 104(1–2): 91–106.
- 20. Rohde, V., Balden, M. Arc erosion of full metal plasma facing components at the inner baffle region of ASDEX Upgrade. Nuclear Materials and Energy. 2016; 9: 36–39.
- 21. Yang, H.J., Chen, G.X., Zhang, S.D., Zhang, W.H. Effect of the vibration on friction and wear behavior between the carbon strip and copper contact wire pair. Proc I Mech E Part J: J Engineering Tribology. 2012; 226(8): 722–728.
- 22. Lin, X.-Z., Zhu, M.-H., Mo, J.-L., Chen G.-X., Jin, X.-S., Zhou, Z.-R. Tribological and electric-arc behaviors of carbon/copper pair during sliding friction process with electric current applied. Trans. Nonferrous Met. Soc. China. 2011; 21: 292–299.
- 23. Kubo, S., Kato, K. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current, Wear. 1998; 216: 172–178.
- 24. Kubo, S., Kato, K. Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metallized carbon contact strip sliding against a copper disk, Tribology International. 1999; 32: 367–378.
- 25. Ding, T., Chen, G-X., Li, Y-M., He, Q-F., Xuan, W-J. Fricton and wear behaviour of pantographs strip sliding against copper contact wire with electric current. AASRI Conference for Power and Energy System. AASRI Procedia. 2012; 2: 288–292.
- 26. Yang, H., Wang, K., Liu, Y., Fu, L., Cui, X., Jiang, G., Hu, B. The formation of the delamination wear of the pure carbon strip and its influence on the friction and wear properties of the pantograph and catenary system. Wear. 2020; 454–455: 203343.
- 27. Zhang, Y.Y., Zhang, Y.Z., Song, C.F. Arc discharges of a pure carbon strip affected by dynamic contact force during current-carrying sliding. Materials. 2018; 11(5): 796–810.
- 28. Chen, G.X., Yang, H.J., Zhang, W.H., Zhang, X., Wang, S.D. Experimental study on arc ablation occurring in a contact strip rubbing against a contact wire with electrical current. Tribology International. 2013; 61: 88–94.
- 29. Yang, Z.H., Zhang, Y.Z., Zhao, F., Shangguan, B. Dynamic variation of arc discharge during currentcarrying sliding and its effect on directional erosion. Tribology International. 2016. 94: 71–76.
- 30. Mei, G. Tribological performance of rigid overhead lines against pantograph sliders under DC passage. Tribology International. 2020; 151: 106538.
- 31. Chen, G.X., Hu, Y., Dong, B.J., Yang, H.J., Gao, G.Q., Wu G.N., Zhang, W.H., Zhou, Z.R. Experimental study on the temperature of the contact strip in sliding electric contact, Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology. 2017; 208–210; 1994–1996.
- 32. Durak, S., Partyka, J., Gustaw, M. Measurements and analysis of partial discharges using a corona discharge camera. Electrotechnical Review. 2020; 96(8): 156–159. (in Polish)
- 33. Florkowska, B., Furgał, J. High voltage technique. Theoretical basis and laboratory. Wydawnictwo AGH. 2017. Kraków. (in Polish)
- 34. Grill, P. Electrical Power Equipment Maintenance and Testing. Second Edition. CRC Press. 2009.
- 35. Jaworek, A., Czech, T., Krupa, A., Lackowski, M., Rajch, E. Back discharge morphology. In: 6th Scientific and Technical Conference of Electrofilters. 2002. Cracow. September 19–21, 2002.
- 36. Piec, M., Dobrzański, L.A., Labisz, K., Jonda, E., Klimpel, A. Laser alloying with WC Ceramic Powder in hot work tool steel using a High Power Diode Laser (HPDL), Advanced Materials Research 2007; 15–17: 193–198.
- 37. Stańczyk, M., Figlus, T. The influence of the hardening coolant agent on the properties of hot rolled bars of the steel 42CrMo4, Metalurgija, 2014; 53(4): 493–493.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cb7b1fa-ff60-4e4d-bcb0-b217c5aa0ea7