PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unmanned vehicle mobility improvement against ballistic threats during special missions: a simulation study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Implementing unmanned solutions in combat operations transforms battlefield dynamics by minimizing human risks. This study focuses on improving the ballistic protection of key elements in unmanned vehicles to enhance their mobility in hazardous areas. Advancements in unmanned ground vehicle technologies are described. The benefits of developing optionally unmanned vehicles for special purposes are indicated. The high- mobility manned-unmanned TAERO vehicle is introduced, and its structure and parameters are described. Operational limitations arising from potential threats during military missions are identified. Critical components requiring ballistic protection are selected, and the necessary protection levels are defined. Available materials for additional ballistic protection are described in relation to the NATO STANAG 4569 standard, which applies to logistic and light armored vehicles. Numerical analysis was conducted to evaluate the protection of key vehicle components using the lightest composite armors. This study is crucial for validating the effectiveness of the selected composite material and ensuring that its implementation meets the required standards for providing the desired level of ballistic protection for unmanned vehicles. The results confirm that the proposed solution improves the TAERO mobility in dangerous zones.
Czasopismo
Rocznik
Strony
139--151
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Military Institute of Armoured and Automotive Technology; Okuniewska 1, 05-070 Sulejówek, Poland
  • Military Institute of Armoured and Automotive Technology; Okuniewska 1, 05-070 Sulejówek, Poland
  • University of Defence, Faculty of Military Technology, Department of Mechanical Engineering; Kounicova 65 , 662 10 Brno, Czech Republic
Bibliografia
  • 1. National Research Council. Technology Development for Army Unmanned Ground Vehicles. Washington, DC: The National Academies Press. 2002. ISBN 978-0-309-08620-2. DOI: 10.17226/10592.
  • 2. Whitson, J.A. & Gorsich, D. & Vantsevich, V.V. & Letherwood, M. & Sapunkov, O. & Moradi, L. Military unmanned ground vehicle maneuver: a review and formulation. SAE Technical Paper. 2023. DOI: 10.4271/2023-01-0108.
  • 3. Swett, B.A. & Hahn, E.N. & Llorens, A.J. Designing robots for the battlefield: State of the art. Robotics, AI, and Humanity: Science, Ethics, and Policy. 2021. P. 131-146. DOI: 10.1007/978-3-030-54173-6_11.
  • 4. Giurgiu, T. & Virca, I. & Grigoras, C. & Nastasescu, V. Trends in development of military vehicles capabilities based on advanced technologies. In: International conference Knowledge-Based Organization. 2023. Vol. 29. No. 3. P. 15-22.
  • 5. Konecny, V. & Jaśkiewicz, M. & Downs, S. Motion planning and object recognition algorithms, vehicle navigation and collision avoidance technologies, and geospatial data visualization in network connectivity systems. Contemporary Readings in Law and Social Justice. 2022. Vol. 14(1). P. 89-104. DOI: 10.22381/CRLSJ14120226.
  • 6. Beycimen, S. & Ignatyev, D. & Zolotas, A. A comprehensive survey of unmanned ground vehicle terrain traversability for unstructured environments and sensor technology insights, Engineering Science and Technology. 2023. Vol. 47. No. 101457. DOI: 10.1016/j.jestch.2023.101457.
  • 7. Nowakowski, M. & Berger, G.S. & Braun, J. & Mendes, J.A. & Bonzatto Junior, L. & Lima, J. Advance reconnaissance of UGV path planning using unmanned aerial vehicle to carry our mission in unknown environment. In: Marques, L. & Santos, C. & Lima, J.L. & Tardioli, D. & Ferre, M. (eds). Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems. 2024. Vol. 978. Springer, Cham. DOI: 10.1007/978-3-031-59167-9_5.
  • 8. Vala, M. & Żalud, Z & Neumann, V. Teorie a konstrukce bcjovych a specialmch vozidel: ucebnice. Brno: Univerzita obrany v Brnę. 2017. ISBN 978-80-7582-023-5. [In Czech: Theory and construction of combat and special vehicles. Textbook].
  • 9. Alinezhad, E. & Gan, V. & Chang, V.W.-C. & Zhou, J. Unmanned ground vehicles (UGVs)-based mobile sensing for Indoor Environmental Quality (IEQ) monitoring: Current challenges and future directions. Journal cf BuildingEngineering. 2024. Vol. 88. DOI: 10.1016/j.jobe.2024.109169.
  • 10. Sukop, M. & Grytsiv, M. & Janos, R. & Semjon, J. Simple ultrasonic-based localization system for mobile robots. Applied Sciences. 2024. Vol. 14(9). No. 3625.
  • 11. Grzejda, R. Determination of bolt forces and normal contact pressure between elements in the system with many bolts for its assembly conditions, Advances in Science and Technology Research Journal. 2019. Vol. 13(1). P. 116-121. DOI: 10.12913/22998624/104657.
  • 12. AEP-55 STANAG 4569. Protection Levels for Occupants of Logistic and Light Armored Vehicles. Part 1-4: General-Annex A. First Edition. NATO: Brussels. Belgium. 2005. Vol. 1.
  • 13. Acar, D. & Canpolat, B.H. & Cora, O.N. Ballistic performances of Ramor 500, Armox Advance and Hardox 450 steels under monolithic, double-layered, and perforated conditions. Engineering Science and Technology, an International Journal. 2024. Vol. 51. No. 101653. DOI: 10.1016/j.jestch.2024.101653.
  • 14. Ranaweera, P. & Bambach, M.R. & Weerasinghe, D. & Mohotti, D. Ballistic impact response of monolithic steel and tri-metallic steel-titanium-aluminium armour to nonrigid NATO FMJ M80 projectiles. Thin-Walled Structures. 2023. Vol. 182. No. 110200. DOI: 10.1016/j.tws.2022.110200.
  • 15. Campbell, F.C. Structural Composite Materials. ASM International. 2010. ISBN 978-1-62708-3140. DOI: 10.31399/asm.tb.scm.9781627083140.
  • 16. Chen, X. Advanced fibrous composite materials for ballistic protection. Woodhead Publishing series in composites science and engineering. UK: Cambridge. 2016. ISBN 978-1-78242-461-1.
  • 17. Crouch, I.G. Body armour - New materials, new systems. Defence Technology. 2019. Vol. 15. No. 3. P. 241-253. ISSN 22149147. DOI: 10.1016/j.dt.2019.02.002.
  • 18. Twaron CT 747. Teijin Limited. Ballistic Materials Handbook. Japan: Tokyo, Osaka. Available at: https://www.teijinaramid.com/sites/default/files/2023-07/Twaron%20Fabric%20WRT%20-%20ComForte%20-%20%28Prepreg%29%20CT%20TA00109%20Engl.pdf.
  • 19. Endumax Shield XF33. Teijin Limited. Ballistic Materials Handbook. Japan: Tokyo, Osaka. Available at: https://www.teijinaramid.com/sites/default/files/2023-07/Endumax-Film-Shield-Fabric-Panel-Laminate-TA00113-English-20210521.pdf.
  • 20. LSTC, LS-DYNA. Theory manual. Livermore Software Technology Corporation. 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cb73a69-9de0-46be-a290-16ba8f771b07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.