PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integro-differential form of the first-order dual phase lag heat transfer equation and its numerical solution using the Control Volume Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The start point of the dual phase lag equation (DPLE) formulation is the generalized Fourier law in which two positive constants (the relaxation and thermalization times) appear. This type of equation can be used (among others) to describe the heat conduction processes proceeding in micro-scale. Depending on the number of components in the development of the generalized Fourier law into a power series, one can obtain both the first-order DPLE and the second-order one. In this paper the first-order dual phase lag equation is considered. The primary objective of this research is the transformation of DPLE differential form to the integro-differential one supplemented by the appropriate boundary-initial conditions. The obtained form of the differential equation is much simpler and more convenient at the stage of numerical computations – the numerical algorithm based on the three-time-level scheme reduces to the two-time-level one. To find the numerical solution, the Control Volume Method is used (the heating of thin metal film subjected to a laser beam is considered). The choice of the numerical method was not accidental. The method has a simple physical interpretation ensuring the preservation of the local and global energy balances. To our knowledge, it has not been used so far in this type of tasks. In the final part of the paper the examples of numerical simulations are presented and the conclusions are formulated.
Rocznik
Strony
415--444
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa, Poland
autor
  • University of Occupational Safety Management, Bankowa 8, 40-007 Katowice, Poland
autor
  • Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • 1. Z.M. Zhang, Nano/Microscale Heat Transfer, McGraw-Hill, New York, 2007.
  • 2. D.Y. Tzou, Macro- to Microscale Heat Transfer: the Lagging Behavior, 2nd Ed., Wiley, New York, 2014.
  • 3. Y. Zhang, D.Y. Tzou, J.K. Chen, Micro- and nanoscale heat transfer in femtosecond laser processing of metals, [in:] P.H. Barret, M. Palmerm [eds.], High-power and Femtosecond Lasers: Properties, Materials and Applications. pp. 159–206 (Chapter 5), Nova Science Publishers, Inc., Hauppauge, 2009.
  • 4. A.N. Smith, P.M. Norris, Microscale heat transfer, [in:] A. Bejan, A.D. Kraus [eds.], Heat Transfer Handbook, Chap. 18, pp. 1309–1357, John Willey & Sons, Hoboken, New York, USA, 2003.
  • 5. E. Majchrzak, B. Mochnacki, A.L. Greer, J.S. Suchy, Numerical modeling of short-pulse laser interactions with multi-layered thin metal films, Computer Modeling in Engineering & Sciences, 41, 2, 131–146, 2009.
  • 6. C.P. Grigoropoulos, A.C. Chimmalgi, D.J. Hwang, Nano-structuring using pulsed laser irradiation, [in:] C. Phipps [ed.], Laser Ablation and its Applications, 129, Springer Series in Optical Sciences, 473–504, 2007.
  • 7. C. Cattaneo, A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Comptes Rendus, 247, 431–433, 1958.
  • 8. K.K. Tamma, X. Zhou, Macroscale and microscale thermal transport and thermomechanical interactions: some noteworthy perspectives, Journal of Thermal Stresses, 21, 3-4, 405–449, 1998.
  • 9. D.Y. Tzou, A unified field approach for heat conduction from macro- to micro-scales, Journal of Heat Transfer, 117, 1, 8–16, 1995.
  • 10. R.A. Escobar, S.S. Ghai, M.S. Jhon, C.H. Amon, Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling, International Journal of Heat and Mass Transfer, 49, 1-2, 97–107, 2006.
  • 11. J. Cabrera, M.A. Castro, F. Rodríquez, J.A. Martín, Difference schemes for numerical solutions of lagging models of heat conduction, Mathematical and Computer Modelling, 57, 7-8, 1625–1632, 2013.
  • 12. E. Majchrzak, B. Mochnacki, Implicit scheme of the finite difference method for the second-order dual phase lag equation, Journal of Theoretical and Applied Mechanics, 56, 2, 393–402, 2018.
  • 13. S. Chiriµă, M. Ciarletta, V. Tibullo, On the thermomechanical consistency of the time differential dual-phase-lag models of heat conduction, International Journal of Heat and Mass Transfer, 114, 277–285, 2017.
  • 14. E. Majchrzak, B. Mochnacki, First and second order dual phase lag equation. Numerical solution using the explicit and implicit schemes of the finite difference method, MATEC Web of Conferences ICCHMT, 240, 05018, 2018.
  • 15. W. Dai, R. Nassar, A compact finite difference scheme for solving a three-dimensional heat transport equation in a thin film, Numerical Methods for Partial Differential Equations, 16, 5, 441–458, 2000.
  • 16. S. Chiriµă, High-order effects of thermal lagging in deformable conductors, International Journal of Heat and Mass Transfer, 127, 965–974, 2018.
  • 17. D. Deng, Y. Jiang, D.Y. Liang, High-order finite difference methods for a second order dual-phase-lagging models of microscale heat transfer, Applied Mathematics and Computation, 309, 31–48, 2017.
  • 18. R. Quintanilla, R. Racke, A note on stability in dual-phase lag heat conduction, International Journal of Heat and Mass Transfer, 49, 7-8, 1209–1213, 2006.
  • 19. H. Askarizadeh, E. Baniasadi, H. Ahmadikia, Equilibrium and non-equilibrium thermodynamic analysis of high-order dual-phase-lag heat conduction, International Journal of Heat and Mass Transfer, 104, 301–309, 2017.
  • 20. M. Fabrizio, B. Lazzari, Stability and second law of thermodynamics in dual-phase-lag heat conduction, International Journal of Heat and Mass Transfer, 74, 484–489, 2014.
  • 21. M. Ciesielski, Analytical solution of the dual phase lag equation describing the laser heating of thin metal film, Journal of Applied Mathematics and Computational Mechanics, 16, 1, 33–40, 2017.
  • 22. D.W. Tang, N. Araki, Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses, International Journal of Heat and Mass Transfer, 42, 5, 855–860, 1999.
  • 23. K. Ramadan, Semi-analytical solutions for the dual phase lag heat conduction in multilayered media, International Journal of Thermal Sciences, 48, 1, 14–25, 2009.
  • 24. S. Kumar, A. Srivastava, Finite integral transform-based analytical solutions of dual phase lag bio-heat transfer equation, Applied Mathematical Modelling, 52, 378–403, 2017.
  • 25. K.C. Liu, J.C. Wang, Analysis of thermal damage to laser irradiated tissue based on the dual-phase-lag model, International Journal of Heat and Mass Transfer, 70, 621–628, 2014.
  • 26. V. Mohammadi-Fakhar, S.H. Momeni-Masuleh, An approximate analytic solution of the heat conduction equation at nanoscale, Physics Letters A, 374, 4, 595–604, 2010.
  • 27. M.A. Castro, F. Rodríguez, J. Escolano, J.A. Martín, Exact and analytic numerical solutions of lagging models of heat transfer in a semi-infinite medium, Abstract and Applied Analysis, ID 397053, p. 6, 2013.
  • 28. H. Wang, W. Dai, R. Melnik, A finite difference method for studying thermal deformation in a double-layered thin film exposed to ultrashort pulsed lasers, International Journal of Thermal Sciences, 45, 12, 1179–1196, 2006.
  • 29. M. Ciesielski, Application of the Alternating Direction Implicit Method for numerical solution of the dual-phase lag equation, Journal of Theoretical and Applied Mechanics, 55, 3, 839–852, 2017.
  • 30. B. Mochnacki, M. Ciesielski, Dual phase lag model of melting process in domain of metal film subjected to an external heat flux, Archives of Foundry Engineering, 16, 4, 85–90, 2016.
  • 31. R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, [in:] P.G. Ciarlet, J.L. Lions [eds.], Techniques of Scientific Computing, Part III, Handbook of Numerical Analysis, VII, 713–1020, North-Holland, Amsterdam, 2000.
  • 32. H.K. Versteeg, W. Malalasekera, An Introduction To Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Pearson Education, Harlow, 2007.
  • 33. E. Majchrzak, General boundary element method for the dual-phase lag equations describing the heating of two-layered thin metal films, [in:] A. Öchsner, H. Altenbach [eds.], Engineering Design Applications II, Advanced Structured Materials, 113, 263–278, 2019.
  • 34. N. Bazarra, M.I.M. Copetti, J.R. Fernandez, R. Quintanilla, Numerical analysis of some dual-phase-lag models, Computers & Mathematics with Applications, 77, 2, 407– 426, 2019.
  • 35. A.D. Polyanin, V.F. Zaitsev, Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, 3rd ed., Chapman and Hall/CRC, UK, 2018.
  • 36. D.D. Joseph, L. Preziosi, Heat waves, Reviews of Modern Physics, 61, 1, 41–73, 1989.
  • 37. M. Ciesielski, B. Mochnacki, Hyperbolic model of thermal interactions in a system biological tissue-protective clothing subjected to an external heat source, Numerical Heat Transfer, Part A: Applications, 74, 11, 1685–1700, 2018.
  • 38. T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during short-pulse laser heating of metals, ASME Journal of Heat Transfer, 115, 4, 835–841, 1993.
  • 39. T.Q. Qiu, T. Juhasz, C. Suarez. W.E. Bron, C.I. Tien, Femtosecond laser heating of multi-layer metals – II Experiments, International Journal of Heat and Mass Transfer, 37, 17, 2799–2808, 1994.
  • 40. J.K. Chen, J.E. Beraun, Numerical study of ultrashort laser pulse interactions with metal films, Numerical Heat Transfer, Part A: Applications, 40, 1, 1–20, 2001.
  • 41. S.A. Richards, Completed Richardson extrapolation in space and time, Communications in Numerical Methods in Engineering, 13, 7, 573–582, 1997.
  • 42. B. Shen, P. Zhang, Notable physical anomalies manifested in non-Fourier heat conduction under the dual-phase-lag model, International Journal of Heat and Mass Transfer, 51, 7-8, 1713–1727, 2008.
  • 43. M. Wang, N. Yang, Z.-Y. Guo, Non-Fourier heat conductions in nanomaterials, Journal of Applied Physics, 110, 064310, 7 pp, 2011.
  • 44. S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction, International Journal of Heat and Mass Transfer, 78, 58–63, 2014.
  • 45. M.A. Al-Nimr, M. Naji, V.S. Arbaci, Nonequilibrium entropy production under the effect of the dual-phase-lag heat conduction model, ASME Journal of Heat Transfer, 122, 2, 217–223, 2000.
  • 46. D. Maillet, A review of the models using the Cattaneo and Vernotte hyperbolic heat equation and their experimental validation, International Journal of Thermal Sciences, 139, 424–432, 2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cb387a0-2374-425a-aad3-09d6f05ef27e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.