PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of Dry Friction Damper to Reduce Vibration Impacts to Circuit Cards at Critical Frequencies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is focused on providing strength and stiffness for circuit cards exposed to vibration at critical frequencies. Since the dry friction damping is more effective than viscous damping and in case when application of viscous dampers is restricted by electronic package design the dry friction damper is proposed to be embedded to design of enclosure case in order to reduce oscillation amplitudes of circuit cards at critical frequencies. Dry friction damper produces dissipative forces – non-elastic resistance forces due to friction in kinematic pairs undergoing oscillations. The mathematical model has been developed for estimation of maximal dynamic stress and deflection in critical cross-section of circuit card with embedded dry friction damper at critical frequencies. Developed mathematical model specifies minimal limit value for stiffness of dry friction damper, which is used in engineering calculations to determine its geometric parameters. Design of dry friction damper is introduced by semi-elliptical beam with rectangular profile. The effectiveness of dry friction damper to reduce dynamic stress and deflection in circuit cards has been analytically proved and experimentally testified.
Twórcy
autor
  • Department of Art and Project Graphics, Khmelnytsky National University, 11 Institutska Str., 29016 Khmelnitsky, Ukraine
  • Department of Physics and Electrical Engineering, Khmelnytsky National University,11 Institutska Str., 29016 Khmelnitsky, Ukraine
  • Department of Art and Project Graphics, Khmelnytsky National University, 11 Institutska Str., 29016 Khmelnitsky, Ukraine
Bibliografia
  • 1. Loon K., Kok C., Mohd E., Ooi C. Modeling the Elastic Behavior of an Industrial Printed Circuit Board Under Bending and Shear. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2019. 9(1): 669–676. DOI: 10.1109/TCPMT.2018.2882575.
  • 2. Allaparthi M., Khan M., Teja B. Three-dimensional finite element dynamic analysis for micro-drilling of multi-layered printed circuit board. In: Materials Today, Proc. 5(2): 2018, 7019–7028. DOI:10.1016/j.matpr.2017.11.365.
  • 3. Cevdet N., Withers P., Murray C. Stresses in Microelectronic Circuits. Reference Module in Materials Science and Materials Engineering. 2016. 12(1): 156–168. DOI:10.1016/B978-1-84569-528-6.00010-1
  • 4. Wong E-H., Mai Y-W. Dynamic deformation of a printed circuit board in drop-shock in robust design of microelectronics assemblies against mechanical shock, temperature and moisture. Woodhead Publishing. 2015. 10: 327–378. DOI:10.1016/B978-1-84569-528-6.00010-1
  • 5. Kim Y. Lee S-M., Hwang D-S., Seohyun J. Analyses on the large size PBGA packaging reliability under random vibrations for space applications. Microelectronics Reliability. 2020. 109. DOI:10.1016/j.microrel.2020.113654
  • 6. Jouneghani K., Hosseini M., Rohanimanesh M., Dehkordi M. Dynamic behavior of steel frames with tuned mass dampers Advances in Science and Technology. Research Journal. 2017. 11(2): 146–158. DOI:10.12913/22998624/70763.
  • 7. Veeramuthuvel P., Sairajan K., Shankar K. Vibration suppression of printed circuit boards using an external particle damper. Journal of Sound and Vibration. 2016. 366: 98–116. https://doi.org/10.1016/j.jsv.2015.12.034.
  • 8. Boiko J., Kovtun I., Petrashchuk S. Vibration transmission in electronic packages having structurally complex design. Proceedings of the First Ukraine IEEE international Conference on Electrical and Computer Engineering. UKRCON – 2017. Kiev. 2017: 514–517. DOI: 10.1109/UKRCON.2017.8100294.
  • 9. Kovtun I., Boiko J., Petrashchuk S. Mathematical model for dynamic force analysis of printed circuit boards. Journal of Physics: Conference Series. The First International Conference on Advances in Smart Sensor, Signal Processing and Communication Technology. ICASSCT 2021. Goa. 2021. DOI 10.1088/1742-6596/1921/1/012120.
  • 10. Kovtun I., Goroshko A., Petrashchuk S. Mathematical modeling of stress in circuit cards represented by mechanical oscillatory systems.Advances in Science and Technology Research Journal. 2022. 16(1): 303–315. DOI: https://doi.org/10.12913/22998624/144574.
  • 11. Pisarenko G.S., Kvitka O.L., Umanskiy E.S. Strength of materials. Kiev: Highest school. 2004. (in Ukrainian)
  • 12. Chudnovsky V., Mukherjee A., Wendlandt J., Kennedy D. Modeling flexible bodies in simmechanics. MatLab Digest. 14(3): 2006.
  • 13. Miller S., Soares T., Weddingen Y. Modeling flexible bodies with simscape multibody software. An Overview of Two Methods for Capturing the Effects of Small Elastic Deformations. MathWorks. 2017.
  • 14. Tae-Yong Park, Seok-Jin Shin, Sung-Woo Park, Soo-Jin Kang, Hyun-Ung Oh. High-damping PCB implemented by multi-layered viscoelastic acrylic tapes for use of wedge lock applications. Engineering Fracture Mechanics. 2021. 241. https://doi.org/10.1016/j.engfracmech.2020.107370.
  • 15. Patent. UA 13063 С1 Ukraine, MPK: H05K 5/00, H05K 7/12, H05K 7/14. Electronic unit / V. P. Salnikkov, E. P. Sereda : NVO «Khartron». – #95320384; publ. 28.02.1997; Bul. #1. (in Ukrainian)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cb2c11f-1102-443d-a1a0-548578ef6768
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.