PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calibration of concrete parameters based on digital image correlation and inverse analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of this paper is to present a robust calibration procedure of essential material parameters of concrete models, based on both full-field measurements and inverse analysis. The proposed method uses a simple laboratory test and home-made correlation software alongside a fast camera. Usually, a full set of material model parameters of concrete can be determined through application of several different tests and specimen conditions. A recent method requires just one test for identification of most of the model constants. It reduces the time needed for testing and provides a relatively fast calibration of the selected parameters through minimization of discrepancies both of experimentally measured displacement fields on the specimen surface and of the numerically computed corresponding quantities. A study of an efficient correlation algorithm and of a reliable minimization gradient-based algorithm is also presented.
Rocznik
Strony
170--180
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
  • Poznan University of Technology, Institute of Structural Engineering, ul. Piotrowo 5, 60-965 Poznan, Poland
autor
  • Poznan University of Technology, Institute of Structural Engineering, ul. Piotrowo 5, 60-965 Poznan, Poland
Bibliografia
  • [1] A.J. Abbo, S.W. Sloan, A smooth hyperbolic approximation to the Mohr Coulomb yield criterion, Computers & Structures 54 (3) (1995) 427-441.
  • [2] H.A. Bruck, S.R. McNeill, M.A. Sutton, W.H. Peters Jr., Digital image correlation using Newton – Raphson method of partial differential correction, Experimental Mechanics 29 (3) (1989) 261—267.
  • [3] V. Buljak, Inverse Analyses with Model Reduction: Proper Orthogonal Decomposition in Structural Mechanics, Springer, 2012.
  • [4] M. Cervera, M. Chiumenti, Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique, Computer Methods in Applied Mechanics and Engineering 196 (2006) 304–320.
  • [5] A.C.T. Chen, W. F Chen, Constitutive relations for concrete, ASCE Journal of Engineering Mechanics Division 101 (4) (1975) 465–481.
  • [6] A. Dragon, Z. Mroz, A continuum model for plastic-brittle behaviour of rock and concrete, International Journal of Engineering Science 17 (2) (1979) 121–137.
  • [7] W. Drucker, D.C. ans Prager, Soil mechanics and plastic analysis or limit design, Quarterly of Applied Mathematics 10 (1952) 157–165.
  • [8] P.H. Feenstra, R. De Borst, A composite plasticity model for concrete, International Journal of Solids and Structures 33 (1996) 707–730.
  • [9] T. Garbowski, G. Maier, G. Novati, Diagnosis of concrete dams by flat-jack tests and inverse analyses based on proper orthogonal decomposition, Journal of Mechanics of Materiale and Structures 6 (1–4) (2011) 181–202.
  • [10] T. Garbowski, G. Maier, G. Novati, On calibration of orthotropic elastic-plastic constitutive models for paper foils by biaxial tests and inverse analyses, Structural and Multidisciplinary Optimization 46 (1) (2012) 111–128.
  • [11] P. Grassl, M. Jirasek, Damage-plastic model for concrete failure, International Journal of Solids and Structures 43 (2006) 7166–7196.
  • [12] F. Hild, B. Raka, M. Baudequin, S. Roux, F. Cantelaube, Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation, Applied Optics 41 (32) (2002) 6815–6828.
  • [13] T. Jankowiak, T. Lodygowski, Identification of parameters of concrete damage plasticity constitutive model, Foundations of Civil and Environmental Engineering 6 (2005) 53–69.
  • [14] L. Jason, A. Huerta, G. Pijaudier-Cabot, S. Ghavamian, An elastic plastic damage formulation for concrete: application to elementary tests and comparison with an isotropic damage model, Computer Methods in Applied Mechanics and Engineering 195 (52) (2006) 7077–7092.
  • [15] J.W. Ju, On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects, International Journal of Solids and Structures 25 (7) (1989) 803–833.
  • [16] J. Lee, G.L. Fenves, Plastic-damage model for cyclic loading of concrete structures, Journal of Engineering Mechanics 124 (8) (1998) 892–900.
  • [17] J.S. Lee, I.Y. Choi, H.N. Cho, Modeling and detection of damage using smeared crack model, Engineering Structures 26 (2) (2004) 267–278.
  • [18] T. Li, R. Crouch, A plasticity model for structural concrete, Computers & Structures 88 (2010) 1322–1332.
  • [19] F.B. Lin, Z.P. Bazant, J.C. Chern, A.H. Marchertas, Concrete model with normality and sequential identification, Computers & Structures 26 (6) (1987) 1011–1025.
  • [20] J. Lubliner, J. Oliver, S. Oller, E. Oñate, A plastic-damage model for concrete, International Journal of Solids and Structures 25 (3) (1989) 299–326.
  • [21] B. Luccioni, S. Oller, R. Danesi, Coupled plastic-damaged model, Computer Methods in Applied Mechanics and Engineering 129 (1–2) (1996) 81–89.
  • [22] MATLAB. version 7.13 (R2011b). The MathWorks Inc., Natick, Massachusetts, 2011.
  • [23] Ph. Menetrey, K.J. Willam, Triaxial failure criterion for concrete and its generalization, ACI Structural Journal 92 (3) (1995) 311–318.
  • [24] J. Nocedal, S. Wright, Numerical Optimization, Springer, 2006.
  • [25] B. Pan, K. Qian, H. Xie, A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Measurement Science and Technology 20 (6) (2009).
  • [26] H. Park, J.Y. Kim, Plasticity model using multiple failure criteria for concrete in compression, International Journal of Solids and Structures 42 (8) (2005) 2303–2322.
  • [27] S.W. Park, Q. Xia, M. Zhou, Dynamic behavior of concrete at high strain rates and pressures: II. Numerical simulation, International Journal of Impact Engineering 25 (9) (2001) 887–910.
  • [28] W.J.M. Rankine, On the stability of loose earth, Philosophical Transactions of the Royal Society of London 147 (1857) 9–27.
  • [29] L. Resende, J.B. Martin, Formulation of Drucker – Prager cap model, Journal of Engineering Mechanics 111 (1985) 855–881.
  • [30] M.A. Sutton, J.J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements, Springer, 2009.
  • [31] S. Weihe, B. Kroplin, R. De Borst, Classification of smeared crack models based on material and structural properties, International Journal of Solids and Structures 35 (12) (1998) 1289–1308.
  • [32] J.Y. Wu, J. Li, R. Faria, An energy release rate-based plastic-damage model for concrete, International Journal of Solids and Structures 43 (3–4) (2006) 583–612.
  • [33] J. Zhang, Z. Zhang, C. Chen, Yield criterion in plastic-damage models for concrete, Acta Mechanica Solida Sinica 23 (3) (2010) 220–230.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cb2bd76-8b32-46c1-a3d3-15f4419a4be7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.