PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of indoor environmental comfort for individuals wearing face masks of different thickness

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena komfortu środowiska wewnętrznego przez ludzi noszących maski o różnej grubości
Języki publikacji
EN
Abstrakty
EN
The present paper experimentally analyses the subjective assessment of indoor environment comfort based on a questionnaire survey conducted in a climate chamber located at Kielce University of Technology (Poland), if two types of face masks are worn by the respondents: thin (medical) and thick (cotton-made) masks. Air temperature and relative humidity in the chamber ranged from around 19 to 28oC and 20 – 70%, respectively. Precise measurement of the microclimate parameters was obtained with a microclimate meter, which recorded air temperature and relative humidity at the moment of completing the questionnaires. The respondents were of similar age (22 – 31 years old) and wore two types of clothing during the experiments: summer and winter, which differed by thermal resistance. This value amounted to 0.5 clo for the summer outfit and 0.8 clo for the winter one. In total 960 questionnaires were analysed in the study. The results indicate that the increase in air temperature led to poorer overall comfort, while the largest comfort sensation was recorded for the most favourable thermal sensation range. In general, thicker masks provided lower overall comfort than thinner masks for all relative humidity values.
PL
Artykuł dotyczy analizy eksperymentalnej komfortu cieplnego środowiska wewnętrznego w oparciu o anonimowe ankiety przeprowadzone w komorze klimatycznej Politechniki Świętokrzyskiej w Kielcach dla dwóch wariantów masek ochronnych na twarz: cieńszych (medycznych) i grubszych (bawełnianych). Temperatura powietrza i wilgotność względna w komorze wynosiły odpowiednio 19 – 28oC i 20 – 70%. Pomiary parametrów mikroklimatycznych zostały wykonane z wykorzystaniem miernika mikroklimatu, który rejestrował temperaturę powietrza i jego wilgotność względną w czasie wypełniania kwestionariuszy. Ankietowani byli w podobnym wieku (22 - 31 lat) i podczas badań mieli na sobie dwa rodzaje odzieży: letnią i zimową, różnice się oporem cieplnym. Wartość ta wynosiła 0,5 clo i 0,8 clo odpowiednio dla ubioru letniego i zimowego. W sumie uzyskane i przeanalizowano 960 kwestionariuszy. Wyniki dowodzą, że wzrost temperatury powietrza prowadził do zaniżenia oceny komfortu, podczas gdy najwyższy poziom zadowolenia ankietowani odnotowali przy najbardziej korzystnym zakresie wrażeń termicznych. Generalnie, grubsze maski ochronne zapewniały niższy poziom komfortu niż maski cieńsze dla wszystkich wartości wilgotności względnej.
Rocznik
Strony
43--50
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, al. Tysiaclecia P.P.7, 25-314 Kielce, Poland
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, al. Tysiaclecia P.P.7, 25-314 Kielce, Poland
autor
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, al. Tysiaclecia P.P.7, 25-314 Kielce, Poland
  • Faculty of Mechanical Engineering, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
  • Faculty of Mechanical Engineering, Kielce University of Technology, al. Tysiaclecia P.P.7, 25-314 Kielce, Poland
Bibliografia
  • 1. Ahmad, R.I., Norfadzilah, J. & Raemy, M.Z. (2022). Human Responses to the Thermal Comfort in Air-Conditioned Building: A Climate Chamber Study, Int. J. Integrated Engineering, 14, 1, pp. 287-295. DOI:10.30880/ijie.2022.14.01.027
  • 2. Amanowicz, Ł., Ratajczak, K. & Dudkiewicz, E. (2023). Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review, Energies, 16, 4, 1853. DOI:10.3390/en16041853
  • 3. Chen, M., Farahani, A.V., Kilpeläinen, S., Kosonen, R., Younes, J., Ghaddar, N., Ghali, K. & Melikov, A.K. (2023). Thermal comfort chamber study of Nordic elderly people with local cooling devices in warm conditions, Building Environment, 235, 110213. DOI:10.1016/j.buildenv.2023.110213
  • 4. Dudkiewicz, E., Laska, M. & Fidorów-Kaprawy, N. (2021). Users’ Sensations in the Context of Energy Efficiency Maintenance in Public Utility Buildings, Energies, 14, 23, 8159. DOI:10.3390/en14238159
  • 5. Dong, Y., Shi, Y., Liu, Y., Rupp, R.F. & Toftum, J. (2022). Perceptive and physiological adaptation of migrants with different thermal experiences: A long-term climate chamber experiment, Building Environment, 211, 108727. DOI:10.1016/j.buildenv.2021.108727
  • 6. Frączek, K., Bulski, K. & Chmiel, M. (2023). Assessment of exposure to fungal aerosol in the lecture rooms of schools in the Lesser Poland region, Archives of Environmental Protection, 49, 4, pp. 95-102. DOI:10.24425/aep.2023.148688
  • 7. Hu, R., Liu, J., Xie, Y., Su, Y., Fang, Z., Diao, Y. & Shen, H., Influencing assessment of mask wearing on thermal comfort and pleasure during outdoor walking in hot summer region, Urban Climate, 54, 101854, 2024. DPOI:10.1016/j.uclim.2024.101854.
  • 8. Huo, S. & Hang, T.T. (2021). Ventilation of ordinary face masks, Building and Environment, 205, 108261. DOI:10.1016/j.buildenv.2021.108261
  • 9. Jiang, H., Cao, B. & Zhu, Y. (2023). Thermal comfort of personal protective equipment (PPE) wearers in different temperatures and activity conditions, Journal of Building Engineering, 78, 107609. DOI:10.1016/j.jobe.2023.107609
  • 10. Jiménez-García, S., De Juan Pérez, A., Pérez-Cañaveras, R.M. & Vizcaya-Moreno, F. (2022). Working Environment, Personal Protective Equipment, Personal Life Changes, and Well-Being Perceived in Spanish Nurses during COVID-19 Pandemic: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19, 4856. DOI:10.3390/ijerph19084856
  • 11. Kaniowski, R. & Pastuszko, R. (2021). Boiling of FC-72 on Surfaces with Open Copper Microchannel, Energies, 14, 7283. DOI:10.3390/en14217283
  • 12. Krawczyk, N., Dębska, L., Piotrowski, J.Zb., Honus, S. & Majewski, G. (2023). Validation of the Fanger Model and Assessment of SBS Symptoms in the Lecture Room, Rocznik Ochrona Środowiska, 25, pp. 68-76. DOI: 10.54740/ros.2023.008
  • 13. Lin, Y-C. & Chen, C-P. (2019). Thermoregulation and thermal sensation in response to wearing tight-fitting respirators and exercising in hot-and-humid indoor environment, Building and Environment, 160, 106158. DOI: 10.1016/j.buildenv.2019.05.036
  • 14. Liu, C., Li, G., He, Y. Zhang, A. & Ding, Y. (2020). Effects of wearing masks on human health and comfort during the COVID-19 pandemic, IOP Conf Ser: Earth Environ Sci, 531, 012034. DOI: 10.1088/1755-1315/531/1/012034
  • 15. Liu, T., Shan, X., Deng, Q., Zhou, Z., Yang, G., Wang, J. & Ren, Z. (2022). Thermal Perception and Physiological Responses under Different Protection States in Indoor Crowded Spaces during the COVID-19 Pandemic in Summer, Sustainability, 14, p. 5477. DOI:10.3390/su14095477
  • 16. Majewski, G., Orman, Ł.J., Telejko, M., Radek, N., Pietraszek, J. & Dudek, A. (2020). Assessment of Thermal Comfort in the Intelligent Buildings in View of Providing High Quality Indoor Environment, Energies, 13, 8, 1973. DOI:10.3390/en13081973
  • 17. Mutiara Sari M., Inoue, T., Septiariva, I.Y., Suryawan, W.K., Kato, S., Harryes, R.K., Yokota, K., Notodarmojo, S., Suhardono S. & Ramadan, B.S. (2022). Identification of face mask waste generation and processing in tourist areas with thermo-chemical process, Archives of Environmental Protection, 48, 2 pp. 79-85. DOI:10.24425/aep.2022.140768
  • 18. Nogaj, K., Turski, M. & Sekret R. (2017). The influence of using heat storage with PCM on inlet and outlet temperatures in substation in DHS, E3S Web of Conferences, 22, 00124. DOI:10.1051/e3sconf/20172200124
  • 19. Nogaj, K., Turski, M. & Sekret R. (2018). The use of substations with PCM heat accumulators in district heating system, MATEC Web of Conferences, 174, 01002. DOI:10.1051/matecconf/201817401002
  • 20. Orman, Ł.J., Siwczuk, N., Radek, N., Honus, S., Piotrowski, J.Z. & Dębska, L. (2024). Comparative Analysis of Subjective Indoor Environment Assessment in Actual and Simulated Conditions, Energies, 17, 656. DOI:10.3390/en17030656.
  • 21. Ratajczak, K., Amanowicz, Ł., Pałaszyńska, K., Pawlak, F. & Sinacka, J. (2023). Recent Achievements in Research on Thermal Comfort and Ventilation in the Aspect of Providing People with Appropriate Conditions in Different Types of Buildings—Semi-Systematic Review, Energies, 16, 17, 6254. DOI:10.3390/en16176254
  • 22. Seo, R., Rhee, K-N. & Jung, G-J. (2024). Impact of wearing indoor masks on occupant’s thermal comfort under different room temperature conditions in winter, Indoor and Built Environment, DOI:10.1177/1420326X241286888
  • 23. Soebarto, V., Zhang, H. & Schiavon, S. (2019). A thermal comfort environmental chamber study of older and younger people, Building Environment, 155. DOI:10.1016/j.buildenv.2019.03.032
  • 24. Starzomska, A. & Strużewska, J. (2024). A six-year measurement-based analysis of traffic-related particulate matter pollution in urban areas: the case of Warsaw, Poland (2016-2021), Archives of Environmental Protection, 50, 2 pp. 75-84. DOI:10.24425/aep.2024.150554
  • 25. Stokowiec, K., Wciślik, S. & Kotrys-Działak, D. (2023). Innovative Modernization of Building Heating Systems: The Economy and Ecology of a Hybrid District-Heating Substation, Inventions, 8, 1, 43. DOI:10.3390/inventions8010043
  • 26. Testo (2024), www.testo.com (28.06.2024)
  • 27. Upadhyay, K., Elangovan, R. & Subudhi, S. (2023). Establishing thermal comfort baseline in a sub-tropical region through a controlled climate chamber study, Advances in Building Energy Research. DOI:10.1080/17512549.2023.2258884
  • 28. Hang, R., Liu, J., Zhang, L., Lin, J. & Wu, Q. (2021). The distorted power of medical surgical masks for changing the human thermal psychology of indoor personnel in summer, Indoor Air, 31, pp. 1645-1656. DOI:10.1111/ina.12830
  • 29. Zhang, T.T., Zhang, T. & Liu, S. (2022). A Modified Surgical Face Mask to Improve Protection and Wearing Comfort, Buildings, 12, 663. DOI:10.3390/buildings12050663
  • 30. Zhang, Z.; Zhang, Y. & Khan, A. (2019). Thermal comfort of people from two types of air-conditioned buildings - Evidences from chamber experiments, Building Environment, 162, 106287. DOI:10.1016/j.buildenv.2019.106287
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cad6348-f179-4fa9-bc07-2a58fe8f1001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.